VR locomotion as a whole is a tricky thing, because essentially straying outside 1 to 1 tracking motion often means you will be inducing unexpected motion on the VR user. Often causing what can sometimes be called simulation sickness. Throwing off the users vestibular system system.
Most artificial or unnatural motion schemes just leave the user lacking the proper expectation of the motion they will under go. Unless given the time to learn such expectations. This can make many VR experiences either take a longer time or understand, or limit their overall effective length. Reasons many early VR experiences targeted a short length. Though I’d say younger users can wrap their brain around such motion interfaces faster, what could we do to attempt to alleviate unexpected motion?
Once such thing is enabling motion through grabbing and pulling which can surprisingly help the user expect what they are about to do. While some may get disoriented at first, the brain can often quickly connect to the expectation of grabbing and pulling through space. In my opinion much easier then just pressing a button or joystick to artificially move forward or rotate around an environment.
Why? well the user can’t possibly know at first how fast a button will move them, or how fast a joystick might rotate them. They’ll have to wrap their head around it first. While grabbing the world around them will instead give them an anchor to base their relative movment around.
While it may be too much freedom for many applications, it’s certainly powerful… being able to quickly maneuver and visualize from a desired perspective and even scale. It goes to say that 3D spatial understanding is not just complimented in VR, but is extend beyond what we are normally capable of experiencing.
Tools for computer aided design appear to stand to benefit from such free form locomotion.