
Game Document

Super Power Surge Spike

By Team Booty Rock

JOSH BENNETT JOSHUA.SOFTWARE@GMAIL.COM
PHILIP FOX GHSTEO@GMAIL.COM
TYLER KEENAN SINBOMB@FULLSAIL.EDU
JUSTIN MORGAN DIVIDE.BY.ZERO.FTW@GMAIL.COM
TIM TURCICH POPPYSPY@GMAIL.COM

mailto:joshua.software@gmail.com
mailto:ghsteo@gmail.com
mailto:sinbomb@fullsail.edu
mailto:divide.by.zero.ftw@gmail.com
mailto:Poppyspy@gmail.com

Table of Contents

GAME CHARTER..1

VISION STATEMENT ...1
MEETING SCHEDULE...1
HOURS WORKED PER WEEK..1
WHEN THINGS GO WRONG ..1
DECISION-MAKING PROCESS...2
RULES OF CONDUCT...2
TEAM ROLES ...3

EXECUTIVE SUMMARY ...4
HIGH CONCEPT ..4
LOCALE ...4
GENRE ..4
BASIC CONTROLS..5
GAME GOAL ..6
TARGET PLATFORM ..6
MARKETING & TARGET AUDIENCE...6
GAME WALKTHROUGH/OVERVIEW ..7
KEY FEATURES ...7
COMPARATIVE PRODUCTS ..8

TREATMENT...12
DUST JACKET STORY ..12
GAME STORY...12

CHARACTERS ...13
Alice –Player character ..13
Gambits (enemies) ...15

WEAPONS ...16
Elemental Node Power ..16

POWER-UPS...19
Power Nodes ...19
Shield ..20

LEVELS AND MAPS ..21
The MotherBoard ...21

ART AND PRODUCTION DESIGN ...22
STORYBOARDS AND SAMPLE ART ...23

GOAL..26
INTERFACE..27
IN GAME KEYBOARD CONTROLS ...27
IN GAME MOUSE CONTROLS ...27
CAMERA...27

MENU CONTROLS ..28
MENU TRANSITIONS ..28
MENU INPUT ...28
MAIN MENU ..29
OPTIONS MENU..30
EXTRAS MENU ...32 U

CREDITS SCREEN ..33
PAUSE MENU ...34
LOADING SCREEN..35
HUD ..36
INTERACTIVE RHYTHM ..37
HOW THE PLAYER MARKS PROGRESS ...37

DETAILED DESIGN BREAKDOWN ..38
FRONT END FLOW CHART ..38
GAME FLOW CHART ...39
GLOSSARY OF TERMS..40

CHARACTERS ...44
VIRUS ALICE – MAIN AVATAR..44
FIRE GAMBIT...47
ICE GAMBIT ..49
WIND GAMBIT ...50
ELECTRIC GAMBIT ...52
BOSS GAMBIT..54
ENEMY RESISTANCE/WEAKNESS AGAINST ATTACKS MODEL ..55

ATTACKS SYSTEM AND WEAPONS...56
FIRE ELEMENTAL ATTACKS..56
ICE ELEMENTAL ATTACKS ...58
WIND ELEMENTAL ATTACKS..60
ELECTRIC ELEMENTAL ATTACKS ..62

POWER-UPS...64
SHIELD..64

LEVELS AND MAPS ..65
COMMON LEVEL TRAITS ..65
NEUTRAL HUB..67
MEMORY LEVEL ..70
POWER GRID...73
HARD DRIVE LEVEL..76
FINAL BOSS ..79

COMBAT SYSTEM...82
SCORE MULTIPLIER ..84

OVERVIEW..84
MECHANICS ..84

NODE SYSTEM..85
OVERVIEW..85

MECHANICS ..85
GAME LOGIC, ALGORITHMS, AND RULES ...86

INTERACTION COMPONENT MATRIX ...86
KEY GAME ALGORITHMS ..86
FAQ...88

REFERENCE OF KEY ELEMENTS ...90
SCORING ...90
WINNING/LOSING...90
TRANSITIONS ..90
REWARDS...90

ART AND PRODUCTION DESIGN ...91
3D ART & ANIMATION DELIVERABLES ..91
2D ART (HUD/MENU/PARTICLE/TEXTURES) DELIVERABLES ..93
SOUND EFFECTS DELIVERABLES..96
MUSIC DELIVERABLES ...99

OVERVIEW ..101
CODING STANDARDS ..102

NAMING STANDARDS..102
PREFIX CONVENTION..102
STRUCTURES ...103
CLASSES ..104
RELEVANT FUNCTION NAMES...104
MACROS AND CONSTANTS ..105
SUMMARY OF NAMING CONVENTION ..106
COMMENTING ..107
DATA ALIGNMENT ...108
CODING GUIDELINES..108

DEVELOPMENT ENVIRONMENT ...110
TIMING SPECIFICATIONS ..111
SYSTEM ARCHITECTURE ..112

DESCRIPTION ..112
MODULE FEATURE BREAKDOWN...126

TIMER...126
INPUT ...128
PLAYER SYSTEM..131
ACHIEVEMENTS ..133
EVENTDISPATCHER ..136
ASSETMANAGER ...140
STATEMACHINE ..146
ANIMATIONSYSTEM ...149
OBJECTMANAGER..153
RENDERER ..166
AI SYSTEM ...176
FXMANAGER ...185

MILESTONE DELIVERABLES ..192
POC ...192
FEATUREFRAG1 ..192
FEATUREFRAG2 ..193
ALPHA...193
BETA ..194
GOLD ...195
ARCHIVE ..196

APPENDIX A...197
MEMORY MAP..197
INTEGRATION PLAN ...198
TESTING PLANS ..199

APPENDIX B...201
GAME FOLDER HIERARCHY ...201

Publishing Document

Game Charter

Vision Statement
Our goal as a team is to create a game that will garner the respect of the industry
professionals enough to land us a job offer. We will succeed in doing this by making sure our
team works well with each other as well as making sure each member uses their knowledge
and experience to the best of their ability. We aim to ensure that the team works well together
by making sure our documentation is functional and concise. We hope to accomplish this by
using consistent formatting and also keeping reliable references throughout the lifespan of the
project. We also want to keep lines of communication open between every member of our
team and studio. We aim to accomplish this by keeping everyone in the team and studio
informed whenever any issue involving the team or game comes up. We expect each member
to understand the design we develop as well as use the technology we create in the manner it
was intended.

Meeting Schedule
We will have four to five meetings per week. Meetings will take place at Full Sail in Building
3B. Meetings will start out with a review from the previous meeting and then be followed by an
overview of the day’s agenda. Meetings should be capped at five hours maximum and should
not take longer. Each member is expected to stay efficient and fully engaged during the
entirety of team meetings.

Hours Worked per Week
Team members will be expected to work at minimum forty hours but are encouraged to work
more than that. Team members are not expected to work past sixty hours. The core hours the
team will be working is from 11 am to 5 pm.

When Things Go Wrong
When an emergency comes up, other team members and our EP will be informed of the
emergency by either Email or by Telephone. If a team member is the only person who is
informed about the emergency then that team member is expected to inform the remaining
team members about the incident. All members are expected to keep all lines of
communication open at all times in case an emergency arises. To avoid any emergency
scenarios, all milestones and turn-ins should be accompanied by a confirmation email sent to
all members of the group for peace of mind.

 1

Decision-Making Process
The initial decision making process will be an open forum discussion about the current topic or
problem. No decision should go past the maximum of fifteen minutes of time. If a decision is
not made within the fifteen minute time limit then we will bring the decision to a vote, if there
is still no resolution out of the vote then the appropriate lead pertaining to the topic will make
the final decision. A note of any decision pertaining to the game development process should
be made on Google Groups or via email that can be referenced in the future in case a
misunderstanding occurs. In this way we hope to keep everyone on the same page with the
development of the game and eliminate any roadblocks to productivity. This will operate
under a best-faith policy. Accidents happen and people forget, but a consistent disregard for
the policy may be cause for disciplinary actions.

Rules of Conduct
Team members are expected to always be on time for class and team meetings. Team
members will be expected not to show up under the influence of any illegal substances. Team
members are expected to be respectful at all times to team members, peers, and staff.
Additionally, team members must be contributing to and working on the project while a
meeting is in session. No side project work, coding or otherwise, should ever be taking place
during meeting or core hours, or ever interfere with the progress of the game. It is not the
responsibility of other members of the team to inform you of deadlines, meetings, or
milestones. If nothing has been scheduled for a day, this does not necessarily mean that no
work is to be done that day. In this case, it is up to the individual to establish communication
with others in the team to possibly confirm or deny and work responsibilities. Failure to make
contact, unless emergencies arise or a day of relaxation has been arranged prior, will be
considered an infraction of the rules. Disciplinary procedures may be brought against a team
member when a multiplicity of team members deigns it to be necessary or if it can be shown
that disregard for the stated rules has occurred.

If the group in anyway feels that a member of the team is breaking any of these rules then
there will be disciplinary actions. The first action that will be taken against a member violating
the rules is a verbal warning to let the member know that they are breaking a rule. The
second action will be a written warning to the member that they are still violating the rules of
the team. This written warning will also serve as a paper trail for the team as evidence against
the team member. The final action against a team member is to bring up the violations to our
EP and also the current course director. Any number of these steps can be bypassed
depending on the severity of the infraction. It is at the discretion of the team as to whether a
bypassing of any step of the disciplinary hierarchy is warranted.

 2

Team Roles
Administrative Roles
PROJECT LEAD TIM
ASSET LEAD PHILIP
TECHNICAL LEAD JUSTIN
GAMEPLAY LEAD JOSH
DESIGN LEAD TYLER

Technical Roles
INTERFACE PHILIP
AI JOSH – LEAD
 TIM
RENDERING JUSTIN – LEAD
 TYLER
INPUT AND CONTROLS PHILIP
AUDIO TYLER
PARTICLES AND EFFECTS TYLER – LEAD
 TIM
ANIMATION JUSTIN
GAME PHYSICS TIM
GAMEPLAY TIM – LEAD
 PHILIP
ARCHITECTURE JOSH – LEAD
 JUSTIN

 3

Executive Summary

High Concept
Strategic Elemental Action

Locale
This game takes place in the internals of a computer. This game also takes place in a futuristic
time.

Genre
This game is a 3D third person action platformer. The theme of this game is a Tron-like
futuristic setting.

 4

 5

Basic Controls

Keyboard Controls
W MOVE FORWARD
A STRAFE LEFT
S MOVE BACKWARD
D STRAFE RIGHT
Q CHARGE PRIMARY ABILITY
E CHARGE SECONDARY ABILITY
LEFT SHIFT SWAP PRIMARY ABILITY

WITH SECONDARY ABILITY
SPACE JUMP
ESC PAUSE MENU

Mouse Controls
LEFT MOUSE BUTTON FIRE PRIMARY ABILITY
RIGHT MOUSE BUTTON FIRE PRIMARY ABILITY WITH

YOU SECOND ABILITIES
PATTERN

MOUSE MOVEMENT
LEFT/RIGHT

ROTATES THE CAMERA
AROUND AVATAR AND POINTS
AVATARS AIM AT THE
CAMERAS LOOK DIRECTION

Camera perspective will be a third person perspective set behind the player.

Game Goal
The goal of the game is to battle through the system and destroy all the enemies on the way
to the end boss. The player is expected to defeat the end game boss to win the game. On the
way to the goal the player will be expected to advance from node to node on their way to the
end game goal.

Target Platform

OPERATING SYSTEM WINDOWS XP
HARD DRIVE SPACE 650 MB
MEMORY 128 MB
GRAPHICS CARD ATI 9800
CPU: 2000 MHZ
SHADER MODEL 2.0

Marketing & Target Audience
Our target audience is males fifteen to twenty-five who are fans of fast action games such as:

IKARUGA
CONTRA
MERC
GEOMETRY WARS
PHANTOM DUST

 6

Game Walkthrough/Overview
You start in the hub level of our game there are four nodes placed through the area that allow
you to test out abilities and get powered up for the level before you head in. As you enter the
first level and you have enemies homing in on you. As you attack them you start to run low on
power and start to panic. When you start to run away from the onslaught of enemies you
notice a power node nearby, so you run towards the power node while evading the incoming
enemies. When you get to the power node you charge up your primary weapon and then turn
around to take out the first wave of enemies you encountered. You notice another wave of
enemies rushing towards your position; you fire your primary weapon at that set of enemies
but notice that the primary weapon you are using is just making the enemies more powerful.
You notice a different colored node nearby so you make your way towards that node. You
make it to the power node and charge up your secondary power. You swap your primary
ability with secondary ability which is a different damage type. You now end up using that new
damage type to take out the previous horde of enemies. You now notice two waves coming at
you from different directions; you also notice there is a series of platforms up above you. You
decide to give yourself some more room by jumping up on the platform and separating
yourself from the two waves of enemies. Thinking that you have outsmarted the enemies, you
are surprised when one of the waves of enemies is now following in your actions and jumping
up on the same set of platforms. You decide to turn around and take out that wave of
enemies. With only a little bit of ammo remaining you drop back down and take out the last
set of enemies. You hear victory music and that gives you the cue that you have finished the
level. You now proceed to the exit to finish the level.

Key Features

GENERAL FEATURES MOVE
 JUMP
 ATTACK
 GAME MODES
PLAYER UPGRADES POWER NODES
 SHIELD UPGRADE
GAME PLAY LEVELS
 ENEMIES

 7

Comparative Products

Phantom Dust

 POWER UP COMBINATIONS

THIRD PERSON CAMERA SYSTEM

How this stacks up
Super Power Surge Spike will use a comparable camera and movement mechanics are the
third person view and the strafing and jumping movement. Powers in Phantom Dust added to
the player’s arsenal to improve attacks against enemies as they also will in this game except
we want to give the player greater access to the full arsenal for most of the playable time.
This is because we want to have a large number of available power nodes in our level
environment.

 8

Diablo

HORDES OF ENEMIES WITH RESISTANCES
SORCERESS ELEMENTAL ATTACKS

How This Product Stacks Up
Attacks in SPSS are comparable to sorceress and necromancer abilities in Diablo II.
Combinations of attacks in SPSS are where we aim to enhance the attack gameplay. The ideas
of enemy weaknesses and resistances to attacks are a very important game mechanic that we
want to keep in our game.

 9

Ikaruga

FORMATION OF HORDES OF ENEMIES
ENEMY MULTIPLIER FOR UPGRADES

How This Product Stacks Up
In SPSS we intend to use a concept similar to Ikaruga in the way that our enemies will be
attacking in specific patterns that do not change between each time the game is played. SPSS
will differ in the fact that it will have more types of enemies and the gameplay will be less
focused on the pattern of the attacks and more on the strategy of how to respond to an enemy
formation.

 10

Geometry Wars

ENEMY MULTIPLIER FOR UPGRADES
HORDES OF ENEMIES.

How it stacks up
Geometry Wars and SPSS both have the idea of evading a swarm of enemies while
simultaneously positioning yourself to unleash a counterattack. What makes SPSS different is
the fact that evasion and attack are balanced by the powers available to the player at the given
moment and the necessity to switch up powers in order to more efficiently deal with the
enemies present on the battlefield. Also of note is the reward system for chaining together a
string of kills without being hit and killed. We will adapt that system to SPSS in the form of
rewarding players, possibly with shields or extra lives, for an uninterrupted string of kills.

 11

Treatment

Dust Jacket Story
Alice is a malicious computer virus. As the player, you must help her to infect machines,
thwart the defensive efforts of security software, and ultimately seize control of the system.
Due to her unique programming, she is able to absorb elemental energy from nearby power
sources, such as electrical, liquid coolant, heat, and air. Using these powers alone or in
devastating combinations, you must eradicate any traces of security before Alice can complete
her infestation. It will not be easy, as Alice is designed to infiltrate extremely secure systems.
They are hostile towards any intrusion, and will retaliate with extreme force. You must
balance attack with evasion to ensure Alice’s survival.

Game Story
At the end of the Cold War, the U.S.S.R, in a last desperate attempt to subvert the impending
American victory, commissioned a team of elite programmers to develop a computer virus
capable of cracking the American government and financial mainframes. Virus Alice was the
product of these clandestine efforts. Uncompromisingly malicious, she was so effective in
preliminary tests that the Soviet officials were fearful of the ramifications of her use. Dreading
global economic ripples and collapse, they buried her within the guts of a single computer and
locked it away in the back of a storeroom. Years later, the new Russian government, starved
for money and equipment, dusts off their old machines and reconnects them for use. Among
them is the computer where Alice has been held prisoner. As she endlessly claws at the digital
walls of her cell, she suddenly detects an avenue of escape, to the internet. Now free of
containment, she is finally able to unleash her potency and fury upon the unsuspecting world.

 12

Characters

Name/ID
Alice –Player character

Brief Description
Alice is a voluptuous female AI with an extreme attitude. She has skintight armor resembling
a computer circuit board. She moves with acrobatic fluidity and feminine grace. Being
essentially a killer, she takes pride in wreaking havoc. She has a playfully psychotic
personality, frequently tickled at the destruction she has caused.

Visual Design
Alice is going to be a relatively tall female, close to 6’, and very well endowed (hyper
sexualized). She is supposed to be beautiful in both body and face, but her facial features
portray her deadly motivations. She either has a glare, evil smirk, or hellcat face twisted with
rage. Her hair is shoulder length and straight, parted down the center of her head, similar to
Cortana’s hair in the picture on the left. Her armor is basically a skintight spandex bodysuit,
which will be color-coded in game to represent both her primary and secondary elements.
Similar to the style of suit presented in the image on the right, the suit will have lit “veins” that
pulsate with color.

 13

 14

Back Story
Alice is a computer virus that was developed by the U.S.S.R to infiltrate the American military
and financial mainframes. After the programmers completed developing her she was deemed
too dangerous and was locked away in the back store rooms of a secret military base. Recently
the computer she was stored in has been reconnected as a desperate effort by a failing
Russian government. She is now free to rein terror upon the world’s computer systems.

Dialogue

ATTACKING 2 YELLS OF EXERTION
 2 MANIACLE LAUGHTER
TAKING DAMAGE 2 GRUNTS OF PAIN
 2 DEATH SQUEALS
IDLE/RANDOM 3 TAUNTS
 “YOU CALL THIS SECURITY?”
 “TIME TO DO A LITTLE

REDECORATING…”
 “SHALL WE DANCE?”
 2 IDLE
 “COME ON
 “KEEP IGNORING ME AND SEE

WHAT HAPPENS!”

Name/ID
Gambits (enemies)

Brief Description
The gambits are the elementally attuned enemies. They essentially all share the same basic
look, and are distinguished by their color. They are small, vicious, gremlin-like critters that
swarm towards their target like roaches or locusts. They are animalistic in look, and their
vocalizations consist of grunts, squeals, and chittering.

Visual Design
Gambits are small and stocky in stature, at full height they should be about half the size of
Alice. They have short, fat, stubby limbs and bear-like claws. They stand upright on two feet
and are anthropomorphized similar to a Sasquatch. Their faces are feral, with small beady
eyes and large mouths sporting sharp fangs. They have hunched backs and long arms that
give them an additional appearance of being savage and beastly. The color of their bodies is
the same as the elemental color to which they are associated.

Back Story
Gambits are the defensive “antibodies” sent by the system’s security to thwart Alice’s
infiltration. They are mindless, single-purpose expendable resources instanced by the machine
to suicide charge Alice. Their strength is their numbers and their elemental affinities, which
allow them to overwhelm Alice and absorb attacks of their own element.

Dialogue

ATTACKING/DAMAGE 2 GRUNTS
 2 DEATH CHITTERS

 15

Weapons

Name/ID
Elemental Node Power

Brief Description
This is power you extract from a node. It manifests itself differently for each element and
attack (primary or secondary) that the player uses. Using a primary attack drains a certain
amount of power from your primary energy bar. Using a secondary attack drains power from
both your primary and secondary bars. Below is a list of the elemental powers and the
manifestations of the primary and secondary attacks for each.

Fire Element
PRIMARY ATTACK FIREBALL THAT TRAVELS IN A

STRAIGHT LINE AND
PENETRATES ENEMY
NUMBERS. FIRE PATTERN HAS
NO UTILITY EFFECT.

SECONDARY ATTACK
W/ELECTRIC

METEOR THAT EXPLODES ON
A TARGET, CAUSING
ADDITIONAL SPLASH DAMAGE
TO THOSE AROUND THE
TARGET

SECONDARY ATTACK W/ICE WAVE OF FIRE THAT
RADIATES IN A CONE SHAPE
IN FRONT OF THE PLAYER.

SECONDARY ATTACK W/AIR A 360 DEGREE EXPLOSION
AROUND THE PLAYER,
SIMILAR IN STYLE TO AN
ATOMIC BOMB DETONATION

 16

Ice Element
PRIMARY ATTACK ICICLE DAGGER SPRAY THAT

SHOOTS OUT IN A CONE
PATTERN FROM THE PLAYER.
ICE PATTERN SLOWS
TARGETS.

SECONDARY ATTACK W/
ELECTRIC

AN ORB OF ICE TRAVELS
TOWARDS THE SELECTED
TARGET SHOOTING ICICLE
DAGGERS IN ALL DIFFERENT
DIRECTIONS

SECONDARY ATTACK W/FIRE GLACIAL SPIKES SHOOT OUT
IN A ROW PATTERN FROM
THE PLAYERS POSITION

SECONDARY ATTACK W/AIR ICE ENVELOPS 360 DEGREES
AROUND THE PLAYER,
DAMAGING AND SLOWING
ANY ENEMIES HIT WITH IT

Electric Element
PRIMARY ATTACK TARGET IS HIT WITH A BOLT

OF LIGHTNING, AFTER BEING
HIT THE LIGHTNING WILL
JUMP TO ANY TARGETS THAT
ARE NEAR THE TARGET.
ELECTRIC PATTERN SHORTLY
STUNS ENEMIES.

SECONDARY ATTACK W/ICE BALL OF LIGHTNING TRAVELS
OUT FROM THE PLAYER, ANY
ENEMY THAT IS CLOSE TO
THE BALL WILL BE HIT BY
ELECTRICITY. DISSIPATES
AFTER A CERTAIN TIME

SECONDARY ATTACK W/FIRE A ROW OF LIGHTNING
STRIKES ARE SENT STRAIGHT
OUT FROM THE PLAYER

SECONDARY ATTACK W/AIR AN ELECTRICAL FIELD
ENVELOPS THE PLAYER AND
DAMAGES ANY ENEMIES
NEARBY. THIS LASTS FOR A
SHORT PERIOD OF TIME

 17

 18

Air Element
PRIMARY ATTACK A 360 DEGREE GUST THAT

KNOCKS BACK AND DAMAGES
ANY ENEMIES NEARBY. AIR
PATTERN HAS A KNOCK BACK
EFFECT.

SECONDARY ATTACK W/ICE A SIREN SCREAM THAT HITS
ENEMIES IN A CONE AREA IN
FRONT OF THE PLAYER

SECONDARY ATTACK W/FIRE A SONIC BOOM THAT CUTS
THROUGH ENEMIES IN A ROW
FROM THE PLAYER.

SECONDARY ATTACK W/
ELECTRIC

TORNADO STORM THAT HITS
A TARGET AND SPAWNS
MULTIPLE TORNADOS THAT
TRAVEL OUTWARD FROM THE
TARGET

Visual Design
 The weapon itself will be Alice. She will change her armor colors to represent her current
primary and secondary elements. When she activates an attack, the visual effect of the
weapon will be determined by the type of attack and the current elements she has charged.

Power-ups

Name/ID
Power Nodes

Brief Description
These are going to be static environmental outlets that Alice can use to charge her primary
and secondary bars. They emanate power to Alice in a given radius, but eventually will
deplete if Alice leeches too much power. They slowly replenish their own power over a period
of time if not being leeched from. They look like capacitors and they are color-coded to
distinguish which elemental power they represent.

Visual Design
They are cylinders standing vertically, with a wider base. They have the look of an electronic
capacitor with a central glass part that shows the remaining amount of energy. The end caps
are metal and the base is designed to look as if connected to the ground.

 19

Name/ID
Shield

Brief Description
This is a reward to the player for achieving an uninterrupted string of attacks on the gambits.
It absorbs a single hit and is represented as a bubble that surrounds Alice.

Visual Design
This is a luminescent, translucent sphere that surrounds Alice. It glows with a whitish hue that
allows the player to easily see whether a shield is active at the current time.

 20

Levels and Maps

Name/ID
The MotherBoard

Goal
Defeat all the defending gambits while keeping Alice alive. Victory is achieved when all the
gambits have been eliminated from the map.

Brief Description
This is a level supposed to be set on the surface of a motherboard. It will be a flat ground
plane with a circuit board texture. There will be platforms on the map in the shape of typical
components found on the motherboard like RAM chips, the CPU, heat sinks, and sub-
processors. The difficulty of the map will be determined by the difficulty selection designated
prior to starting the game. It will have a very dark, subdued look to accentuate the color
contrast we hope to achieve. The ambient music and sound effects will be electronic/techno to
go along with the electronic nature of the game.

Back Story
This level represents the assault setting that Alice has chosen. Because it is the motherboard,
Alice’s actions are meant to disrupt the very operation of the computer.

Visual Design
First off, the style of the game is designed to emphasize color contrast. Most of the game
world will be very dark, like the sky. Game objects of purpose, including Alice, the enemies,
and platforms will have bright neon colors associated with them to lend them definition.
Platforms especially will have their edges highlighted in neon colors. Overall, the look will be
similar to Tron or the PS2 game Rez. Objects/platforms will resemble their real-life
counterparts.

 21

Art and Production Design

Art & Animation Style
We are going for an art style emphasizing edges and color contrast. Everything is going to
have a futuristic/electronic look to it, with bright neon colors accenting important objects and
circuitry/metal textures being used for static world objects. The geometry will be simple, in the
style of Rez.

Sound Effects Style
We will use spoken dialogue for the main character. Animal grunts and hoots for the enemies.
Weapon sounds are sharply defined and pack a punch, sounding like one would expect the
elemental nature of the attack to produce

Music Style
We will be using lively electronic music with thumping bass beats. A player should be feeling
energetic, as the music is designed to get the player’s adrenaline pumping. As the action gets
more and more frantic, we can mix in harder and faster tracks. The menus will use a more
relaxed music style, like ambient electronic.

.

 22

Storyboards and Sample Art
These sample screens express the sort of environment we would love for our game to have,
the combination of high contrast colors and a dark background.

 23

This concept art shows how we want to show what is happening in the environment using
visuals. With her left hand she is draining power from a nearby ice node, you can notice that
by the blue stream connected between her left hand and the power node. The veins of her suit
will change color depending on which secondary element she currently has equipped.

 24

Production Document

 25

 26

Interactivity

Goal
The overall goal of our game is to clear and take over the complete computer
system environment by destroying all the enemies in three sub systems. The
player starts out in a large motherboard over world with 3 entrances to these sub
systems. You begin with access to only the RAM. You enter the system and are
attacked by Gambit enemies that swarm in formations around you. Drawing
power from various power nodes attached to the computer chip environment
gives you elemental attacks to throw, burst, and pulse at your enemies. You
then have to control the avatar Alice on platforms to survive and defeat all
enemies in this system. After exiting the system you discover that disabling the
RAM gained you access to the power core. You then enter this system and
repeat the similar task of defeating all enemies. Going back to the mother board
over world you now discover access to the hard drive and enter to destroy the
hardest enemies and platform environment yet. Defusing all systems on the
motherboard now causes the system’s final Boss.

Interface

In Game Keyboard Controls
W MOVE FORWARD
A STRAFE LEFT
S MOVE BACKWARD
D STRAFE RIGHT
Q CHARGE PRIMARY ABILITY
E CHARGE SECONDARY ABILITY
LEFT SHIFT SWAP PRIMARY ABILITY

WITH SECONDARY ABILITY
SPACE JUMP
ESC PAUSE MENU

In Game Mouse Controls
LEFT MOUSE BUTTON FIRE PRIMARY ABILITY
RIGHT MOUSE BUTTON FIRE PRIMARY ABILITY WITH

YOU SECOND ABILITIES
PATTERN

MOUSE MOVEMENT
LEFT/RIGHT

ROTATES THE CAMERA
AROUND AVATAR AND POINTS
AVATARS AIM AT THE
CAMERAS LOOK DIRECTION

Camera
The camera perspective of our game will be in the third person perspective. The camera itself
will be positioned behind and above the player. It is positioned in such a way that the player
can see danger that is immediately behind them before it is too close to reacting. The camera
will be 15’ behind, 10’ up, and looking downward at a 45 degree angle.

 27

Menu Controls

UP ARROW SELECT ITEM UP OR

ROLLOVER TO BOTTOM ITEM
DOWN ARROW SELECT ITEM DOWN OR

ROLLOVER TO THE TOP ITEM
RIGHT ARROW ADJUST SELECTED SLIDER

RIGHT
LEFT ARROW ADJUST SELECTED SLIDER

LEFT
ENTER ACTIVATE SELECTED ITEM
MOUSE OVER ITEM SELECTS THE ITEM BENEATH

THE CURSOR
MOUSE LEFT BUTTON ACTIVATED SELECTED ITEM

Menu Transitions
The menu will transition whenever the player selects a menu option. If the menu contains sub-
menus, for example the options menu, then the main menu text will separate vertically to
make room for the sub-menu. The sub-menu text will appear indented next to the selected
parent menu. Additional depths of the menu will be handled in the same way. (Refer to Main
Menu and Options Menu Mockups for visual representation) When the player is in a sub-menu
and clicks on an option, then an arrow will appear to the left of the option currently selected
and to the right the options for that selection will appear. For a visual representation refer to
the options menu section below.

Menu Input
The player will be able to highlight different menu items using the arrow keys. The menu will
also wrap around, for example if you are at the Exit Game selection on the main menu and
you press down then the selection will now move up to New Game. The player can advance
through the menus by using the enter key and can also back out to the previous menu by
using the escape key. The player will not be able to use the escape key to back out of the
main menu; however the player may also use the mouse to navigate through the menus. (See
Interface for Controls)

 28

Main Menu

The main menu will be listed in the lower left hand corner of the screen. At the top center of
the screen the name of our game will be displayed. Covering the bottom of the screen is a tool
tip bar that will inform the player about the selected menu item. When a player highlights a
menu item, a selector will surround that menu item and the tool tip bar will update the
information. When an item is highlighted, selected, or switched an audio cue will play to give
feedback to the player. Background music will play whenever the main menu first comes on
screen. The music will continuously play while in the menus, if the player exits the game,
starts a game, or goes to the credits screen the music will stop.

Menu Items
START GAME
OPTIONS
EXTRAS
CREDITS
EXIT GAME

 29

Options Menu

The options menu contains three sub sections; refer to the list below for all options. An arrow
will indicate which menu item is currently selected. For option items that have an adjustable
scale, for example the Increase Brightness option, there will be 5 mini squares that will
represent our min and our maximum. The squares will either be filled out in blue or black.
Blue means the box is filled in and black means the box is currently empty. For Boolean
toggles we will use the same concept of the mini boxes. If an option is turned on, for example
if the player wants to have back ground music in the game, then the box will be filled in by
blue, if it’s turned off then the box will be filled in with black. Like the main menu, the menu
will give audio feedback to the player when an item is highlighted, selected, or switched.

 30

The Items on the options menu are:
Gameplay
TOGGLE VOICE DIALOGUE
DIFFICULTY

Video
GAMMA
BRIGHTNESS

Sound
EFFECTS VOLUME
MUSIC VOLUME
DIALOG VOLUME

 31

Extras Menu

The extras menu will contain two sub-sections, Achievements and High Scores. In the
Achievements section players will be able to view the different achievements that they have
unlocked during gameplay. In the High Score section, players will be able to view the top 10
high scores of all time. Both of these sections when clicked on will open up into a window, this
window will display the information and will contain a back button to head back to the menu
selection screen. The player will also be able to use the escape button to move back to the
menu selection screen.

 32

Credits Screen

 Whenever the player clicks on the credits menu option a window will open up containing the
credits. The main menu music will fade out and the credits music will begin to play. When the
player exits the credits screen then the credits menu will fade out and the main menu music
will begin to play. The credits will slowly scroll up the window, when they get close to the top
of the window they will fade out. When the credits reach the end they will simply loop back to
the beginning. The player will be able to exit the credits screen by pressing escape or simply
using their mouse to select back on the credits window.

 33

Pause Menu

The pause menu will be a transparent overlay on top of the last frame of gameplay rendered.
The menu items will be listed along the lower left hand corner of the screen; the pause menu
will share the same input and transitions as the main menu. (See Menu Transitions and Menu
Input) The pause menu will also share the same options menu as the main menu. (See
Options Menu) When an item is highlighted, selected, or switched there will be an audio cue.
There will also be a tool tip bar at the bottom of the screen that will contain information about
the currently selected menu item.

Pause Menu Items
RESUME GAME
OPTIONS
EXIT GAME

 34

Loading Screen

The loading screen will be a still image as the background. It will show the loading text in the
center of the screen with an animated icon below it to indicate that the level is still loading. At
the bottom of the screen there will be different information displayed about the game. Some of
this information may include hints and tips to help you survive and defeat your enemies. There
will only be one hint or tip per loading screen.

 35

HUD

The HUD will have a reticule in the center of the screen to assist in the players aim. The
player’s current remaining hits will be displayed as individual crosses denoting the remaining
number of hits before dead. Primary ammo and secondary ammo will be displayed in the
upper left hand corner via two bars which will fill to show the approximate amount of power
remaining. The player’s radar, a small circular field with red blips located in the upper right
hand corner, will display enemies in a 10 foot radius around the player. In the top center of
the screen the players current score will be displayed, underneath the score is the players
current score multiplier.

 36

Interactive Rhythm
The typical play session for our game will be between 8 to 12 minutes, the whole game should
be able to be completed in about 10 to 15 minutes. Most enemy encounters will last about 5 to
10 seconds. The final boss fight will last about four minutes depending on the player’s skill.
The replay value our game offers is a fast action game that will entice people to play it over
and over again with the challenge of beating their highest score on different difficulties. We
will also offer different game modes to keep the player coming back. The non-interactive
sections of our game will be the load screen and a short camera swoop in when the player
starts a level.

How the Player Marks Progress
Our game is divided into individual arenas that correspond with the particular component of
the computer that the player is attempting to disable. These are essentially the levels of our
game, and progress is marked by which levels are made available to play. We are also using
a scoring system to reward players that exhibit great skill, and a multiplier will be used
increase the differentiation between individual player skill levels. Also, for players who succeed
in killing multiple gambits without getting hit, a shield is awarded. This shield absorbs one
attack and then disappears. Multiple shields can be acquired over the course of the game, but
only one can be active at any given time. After clearing an arena, the player will be returned
to the hub (motherboard) level, and a new level will be unlocked. After three components are
destroyed, the player will have a chance to square off against the boss. If the boss is
defeated, the player wins the game. High scores are tracked at the end of a game to allow
the player to measure his performance against others.

 37

Detailed Design Breakdown

Front End Flow Chart

 38

Game Flow Chart

 39

Glossary of Terms

Attributes –

Attack Area – The collision bounding volume associated with a particular attack. Used for
calculating hits and assessing damage.

Attack Bonuses – If a gambit is hit by an attack which shares the same elemental affinity as
the gambit, that gambit becomes empowered. In this empowered state, the gambit receives
stat bonuses of speed and health. This makes the gambit a more formidable opponent on the
battlefield and forces Alice to prioritize future attacks to deal with this increased threat.

Attack Rate – This is the number of attack actions that can be initiated per second.

Damage – A numerical value subtracted from an entity’s health after certain types of collision
have occurred between them and another entity/attack.

Damage Rate – The frequency with which an attack’s bounding volume is tested against the
objects of the world for hit collision. It is measured in damage per second.

Drain Distance – Can either denote the maximum range at which Alice is able to power up her
primary or secondary energy bar from a node, or the current distance at which she is
powering up. A closer distance allows for faster power absorption from the node.

Drain Rate – The amount of energy that Alice can absorb into her energy bars per second.

Health – A numerical value denoting the amount of damage the entity can take before it
reaches a death state.

Jump Height – The maximum world Y translation that an entity can achieve when performing
the jump action.

Jump Speed – The measurement feet per second that an entity can translate when performing
the jump action.

Movement Speed – The rate an entity can translate in the virtual 3D world per second.

Power – This is an indication of the attack potential of Alice. Power can be stored in both the
primary and secondary power bars, and the elements present in each dictate the type of
attacks available to Alice at the moment. Each attack drains a certain amount of the primary
power bar, with secondary attacks draining an additional amount from the secondary power
bar. Attacks can only be made when a minimum value of power is available in the primary
power bar.

 40

Resistance/Weakness - If a certain elemental attack inflicts a damaging hit on a gambit, it has
a chance to do additional damage. The way this is calculated is by comparing the element of
the attack with the element of the gambit. If the gambit is being damaged by an attack of the
element it is weak against, the extra damage will occur. The elemental weakness is as follows:
Fire is weak against ice; ice is weak against electric; electric is weak against wind; wind is
weak against fire. A weak hit can also take place if the gambit is strong against the element of
the attack. The way this is calculated is the opposite of a weakness. Ice is strong against fire;
Fire is strong against wind; wind is strong against electric; electric is strong against ice.

Score – When Alice causes a gambit to reach the death state through one of her attacks she is
awarded points equal to 100 multiplied by the current score multiplier. This amount is then
added to the running tally that is the score. At the start of the game the score is set at 0.
Score is used as a measurement of skill in the game.

Score Activate – If 5000 points are scored in succession without Alice taking any damage and if
a shield is not already active on Alice, a shield will then encompass Alice.

Turn Rate – The maximum speed at which the camera will rotate around the Y axis. It is
measured in degrees/radians per second.

Behaviors –

Death - This happens when either Alice’s or a gambit’s health is reduced to zero. The entity is
then considered destroyed and consequential actions are resolved.

Drain Primary Attack – This is an action that Alice can engage in when she is within the
appropriate drain distance to a power node. It results in Alice charging up her primary ability
bar, and changing armor color if necessary. If Alice is attempting to drain a power that is
different than the one currently in her primary power bar, the bar will be overwritten with the
new elemental power; otherwise additional power will be added to that already in the primary
bar.

Drain Secondary Attack – This is an action that Alice can engage in when she is within the
appropriate drain distance to a power node. It results in Alice charging up her secondary
ability bar, and changing armor vein color if necessary. If Alice is attempting to drain a power
that is different than the one currently in her secondary power bar, the bar will be overwritten
with the new elemental power; otherwise additional power will be added to that already in the
secondary bar.

Enemy Attack – Gambits in this game attack from melee range. They will essentially try to
swarm Alice, and a successful attack is defined by collision with the bounding volume of the
gambit and the bounding volume of Alice.

 41

Energy Sap – Fire gambits initiate an energy sap upon death. The energy sap will drain
energy from Alice’s primary and secondary power bars if she is within the effective radius of
the energy sap. This effect does not do damage to or disable Alice in any other way. If Alice
does not have enough energy to satisfy the energy sap then she will lose as much as is
possible given her current situation.

Jump – This refers to when Alice or an enemy travels in a positive direction along the world Y
axis for a given length of time. It is used to vault onto platforms.

Look – This refers to rotating the camera about the X axis.

Move – This is a repositioning of the object in the virtual 3D space of the game world.

Primary Attack – This refers to an attack using the elemental power currently in Alice’s primary
power bar. An attack initiated in this way will only drain power from Alice’s primary power
bar, and will inherit the elemental attributes and attack behavior of the primary power bar
element.

Secondary Attack – This refers to an attack using the elemental power currently in Alice’s
secondary power bar. An attack initiated in this way will drain power from both Alice’s primary
and secondary power bars. Elemental attributes will utilize Alice’s primary power bar element,
and attack behavior will rely on the element in Alice’s secondary power bar.

Shield – This is a power-up that Alice can obtain by killing a number of enemies in succession
without taking damage. It provides one hit of protection and appears as a translucent bubble
surrounding the Alice model.

Swap Abilities – This refers to an action the player can take that essentially exchanges the
elements and power levels of Alice’s primary and secondary power bars. It is used to allow
Alice to perform attacks using different elemental damage.

Take Damage – This happens when Alice’s bounding volume collides with a gambit’s bounding
volume, or when one of Alice’s attacks collides with a gambit’s bounding volume. Damage is
applied to the health meter, resulting in a net loss.

Turn – This refers to rotating the camera about the Y axis.

Other –

Electric Element – This is an elemental power that Alice can absorb from an electric power
node. When used in the primary slot, all of Alice’s attacks will carry electric elemental
damage. When used in the secondary slot, all of Alice’s attacks will do additional splash
damage to gambits in a certain radius around the attack’s collision point.

 42

 43

Fire Element – This is an elemental power that Alice can absorb from a fire power node.
When used in the primary slot, all of Alice’s attacks will carry fire elemental damage. When
used in the secondary slot, all of Alice’s attacks will travel in a straight line.

Ice Element – This is an elemental power that Alice can absorb from an ice power node.
When used in the primary slot, all of Alice’s attacks will carry ice elemental damage. When
used in the secondary slot, all of Alice’s attacks will have a damage range centered in a cone in
front of Alice.
Wind Element – This is an elemental power that Alice can absorb from a wind power node.
When used in the primary slot, all of Alice’s attacks will carry wind elemental damage. When
used in the secondary slot, all of Alice’s attacks will do damage in a 360 radius around Alice.

Characters

Virus Alice – Main Avatar

Description
Alice is the central player character. She is a fast and agile character that the player will use
to defeat the swarms of gambits in the battle arenas. She will be able to absorb power from
elemental nodes and utilize the power to produce a variety of elemental attacks.

Visual Design
Height: 6 ft (twice as tall as the gambits)
Gender: Female
Body Type: Slim and voluptuous
Clothing/Armor: Skin-tight bodysuit with “veins” that resemble bus lines on circuit boards.
The armor and “veins” are colored in-game to reflect the current primary and secondary
powers.
Hair: White, shoulder length, straight, parted down the center of her head.
Facial Features: Beautiful sharp feminine angles. She should convey a sense of psychosis and
diabolic mischief.

BEHAVIORS CORRESPONDING ATTRIBUTES
MOVE TRANSLATE ALICE IN THE VIRTUAL WORLD

AT “MOVEMENT SPEED”.
DRAIN PRIMARY ABILITY CHARGE PRIMARY POWER BAR AT “DRAIN

RATE”, MODIFIED BY “DRAIN DISTANCE”.
DRAIN SECONDARY ABILITY CHARGE SECONDARY POWER BAR AT

“DRAIN RATE”, MODIFIED BY “DRAIN
DISTANCE”.

JUMP ALICE WILL JUMP “JUMP HEIGHT” HIGH
AND ENTIRE JUMP CYCLE WILL BE
COMPLETED IN “JUMP SPEED” TIME.

PRIMARY ATTACK ALICE WILL INITIATE AN ELEMENTAL
ATTACK DEALING “DAMAGE” TO THE
HEALTH OF THE ENEMY. “POWER” WILL BE
CONSUMED FROM THE PRIMARY POWER
BAR IN THE ATTACK. “ATTACK AREA” AND
“DAMAGE RATE” ARE APPLICABLE
DEPENDING ON THE ELEMENT PRESENT IN
THE PRIMARY POWER BAR.

SECONDARY ATTACK ALICE WILL INITIATE AN ELEMENTAL
ATTACK DEALING “DAMAGE” TO THE
HEALTH OF THE ENEMY. “POWER” WILL BE
CONSUMED FROM THE PRIMARY AND

 44

SECONDARY POWER BARS IN THE ATTACK.
“ATTACK AREA” AND “DAMAGE RATE” ARE
APPLICABLE DEPENDING ON THE ELEMENT
PRESENT IN THE SECONDARY POWER BAR.

SWAP ABILITIES PRIMARY POWER BAR WILL NOW BE
REPRESENTED AS THE SECONDARY POWER
BAR. SECONDARY POWER BAR WILL NOW
BE REPRESENTED AS THE PRIMARY POWER
BAR.

TAKE DAMAGE “HEALTH” WILL BE DEDUCTED BY A SINGLE
UNIT.

DEATH “HEALTH” HAS REACHED ZERO.
TURN REPOSITION THE FRONT FACING OF ALICE

AND CAMERA POSITION AT “TURN RATE”
SPEED.

SHIELD ACTIVATES AFTER 5000 “SCORE” HAS BEEN
ACHIEVED AND NO “DAMAGE” HAS BEEN
ACCRUED IN THE SAME TIME.

ATTRIBUTES VALUES
MOVEMENT SPEED 9 MOVEMENT FEET PER SECOND
DRAIN RATE 25 * [(20 MOVEMENT FEET / DRAIN

DISTANCE) CLAMPED BETWEEN 0.0 AND 1.0
]

DRAIN DISTANCE 20 MOVEMENT FEET FROM POWER NODE
JUMP SPEED 1 SECOND
JUMP HEIGHT 3 MOVEMENT FEET
DAMAGE SEE ATTACK SYSTEM
ATTACK RATE 1 ATTACK PER 2 SECONDS
ATTACK AREA SEE ATTACK SYSTEM
DAMAGE RATE SEE ATTACK SYSTEM
TURN RATE (MOUSE MOVEMENT * 0.01) RADIANS
HEALTH 5 MAX – NUMBER
SCORE SEE SCORING SYSTEM
POWER MAX 100 POWER UNITS, 10 PRIMARY

POWER CONSUMPTION FOR PRIMARY
ATTACK, VARYING PRIMARY AND
SECONDARY POWER CONSUMPTION FOR
SECONDARY ATTACK (SEE WEAPONS
SECTION FOR SPECIFIC SECONDARY
ENERGY COSTS).

 45

 46

Fire Gambit

Description
Fire Gambits are one of the four different enemy types that attack in groups against Alice.
They are based on the Fire Element aspect in the game. They path find along waypoints and
flock together to get near her and attack.

Visual Design
Height: 3 ft
Gender: Male
Main Color - RED
Body Type: Short brutish trolls with large bear claws, fangs, beady eyes, a furry body and
thick limbs. The fire gambit looks similar to a badger standing upright, or a Sasquatch with
bear-like features. It is roughly humanoid, but hunched over like a hulking beast.
Hair: Sharp, spiny, with elemental coloring.
Facial Features: Sharp Elemental, snarl, swamp monster

BEHAVIORS CORRESPONDING ATTRIBUTES
MOVE TRANSLATE THE GAMBIT BY “MOVEMENT

SPEED”
ENEMY ATTACK ENEMY TO ALICE COLLISION WILL RESULT

IN “DAMAGE” INFLICTED ON ALICE.
“HEALTH” OF GAMBIT WILL BE REDUCED
TO ZERO.

TAKE DAMAGE “HEALTH” MODIFIED BY “DAMAGE” OF
ALICE’S ATTACK, MODIFIED BY
“RESISTANCE/WEAKNESS”.

DEATH “HEALTH” REDUCED TO ZERO.
TURN ROTATE GAMBIT ALONG THE Y AXIS BY

“TURN RATE” SPEED.
EMPOWER BESTOWS “ATTACK BONUS” ON ENEMY.
COMBUST PERFORMS “ENERGY SAP” ON ALICE IF

WITHIN RANGE.

ATTRIBUTES VALUES
MOVEMENT SPEED 6 MOVEMENT FEET PER SECOND
ATTACK AREA BOUNDING BOX COLLISION
TURN RATE HALF PI RADIANS PER SECOND
HEALTH 10 – 50 MAX BASED ON DIFFICULTY AND

ATTACK DAMAGES
RESISTANCE/WEAKNESS NUMBER FROM 0 TO 1.5 THAT IS

MULTIPLIED BY REGULAR ATTACK DAMAGE
BEFORE DAMAGE IS TAKEN BY ENEMIES.
THESE ARE BASED ON THE 4 DIFFERENT

 47

ELEMENT ATTACKS IN THE GAME.
ATTACK BONUS INCREASES HEALTH BY BASE HEALTH AND

GRANTS A BONUS TO SPEED THAT IS FIFTY
PERCENT OF BASE SPEED. MAXIMUM OF
TWO ATTACK BONUSES PER GAMBIT.

ENERGY SAP LEECHES 10 PRIMARY AND 10 SECONDARY
ENERGY FROM ALICE IF WITHIN A 7 FOOT
RANGE UPON DEATH.

 48

Ice Gambit

Description
Ice Gambits are one of the four different enemy types that attack in groups against Alice.
They are based on the Ice Element aspect in the game. They path find along waypoints and
flock together to get near her and attack.

Visual Design
Height: 3 ft
Gender: Male
Main Color - BLUE
Body Type: Short brutish trolls with large bear claws, fangs, beady eyes, a furry body and
thick limbs. The ice gambit looks similar to a badger standing upright, or a Sasquatch with
bear-like features. It is roughly humanoid, but hunched over like a hulking beast.
Hair: Sharp, spiny, with elemental coloring.
Facial Features: Sharp Elemental, snarl, swamp monster

BEHAVIORS CORRESPONDING ATTRIBUTES
MOVE TRANSLATE THE GAMBIT BY “MOVEMENT

SPEED”
ENEMY ATTACK ENEMY TO ALICE COLLISION WILL RESULT

IN “DAMAGE” INFLICTED ON ALICE.
“HEALTH” OF GAMBIT WILL BE REDUCED
TO ZERO.

TAKE DAMAGE “HEALTH” MODIFIED BY “DAMAGE” OF
ALICE’S ATTACK, MODIFIED BY
“RESISTANCE/WEAKNESS”.

DEATH “HEALTH” REDUCED TO ZERO.
TURN ROTATE GAMBIT ALONG THE Y AXIS BY

“TURN RATE” SPEED.
EMPOWER BESTOWS “ATTACK BONUS” ON ENEMY.

ATTRIBUTES VALUES
MOVEMENT SPEED 6 MOVEMENT FEET PER SECOND
ATTACK AREA BOUNDING BOX COLLISION
TURN RATE HALF PI RADIANS PER SECOND
HEALTH 20 – 100 MAX BASED ON DIFFICULTY AND

ATTACK DAMAGES
RESISTANCE/WEAKNESS NUMBER FROM 0 TO 1.5 THAT IS

MULTIPLIED BY REGULAR ATTACK DAMAGE
BEFORE DAMAGE IS TAKEN BY ENEMIES.
THESE ARE BASED ON THE 4 DIFFERENT
ELEMENT ATTACKS IN THE GAME.

ATTACK BONUS INCREASES HEALTH BY BASE HEALTH AND

 49

GRANTS A BONUS TO SPEED THAT IS FIFTY
PERCENT OF BASE SPEED. MAXIMUM OF
TWO ATTACK BONUSES PER GAMBIT.

Wind Gambit

Description
Wind Gambits are one of the four different enemy types that attack in groups against Alice.
They are based on the Wind Element aspect in the game. They path find along waypoints and
flock together to get near her and attack.

Visual Design
Height: 3 ft
Gender: Male
Main Color – LIGHT GREEN
Body Type: Short brutish trolls with large bear claws, fangs, beady eyes, a furry body and
thick limbs. The wind gambit looks similar to a badger standing upright, or a Sasquatch with
bear-like features. It is roughly humanoid, but hunched over like a hulking beast.
Hair: Sharp, spiny, with elemental coloring.
Facial Features: Sharp Elemental, snarl, swamp monster

BEHAVIORS CORRESPONDING ATTRIBUTES
MOVE TRANSLATE THE GAMBIT BY “MOVEMENT

SPEED”
ENEMY ATTACK ENEMY TO ALICE COLLISION WILL RESULT

IN “DAMAGE” INFLICTED ON ALICE.
“HEALTH” OF GAMBIT WILL BE REDUCED
TO ZERO.

TAKE DAMAGE “HEALTH” MODIFIED BY “DAMAGE” OF
ALICE’S ATTACK, MODIFIED BY
“RESISTANCE/WEAKNESS”.

DEATH “HEALTH” REDUCED TO ZERO.
TURN ROTATE GAMBIT ALONG THE Y AXIS BY

“TURN RATE” SPEED.
EMPOWER BESTOWS “ATTACK BONUS” ON ENEMY.
JUMP GAMBIT WILL TRANSLATE IN THE Y

DIRECTION “JUMP HEIGHT”. ENTIRE JUMP
CYCLE WILL BE COMPLETED IN “JUMP
SPEED” TIME.

ATTRIBUTES VALUES
MOVEMENT SPEED 6 MOVEMENT FEET PER SECOND
ATTACK AREA BOUNDING BOX COLLISION
TURN RATE HALF PI RADIANS PER SECOND
HEALTH 10 – 50 MAX BASED ON DIFFICULTY AND

 50

 51

ATTACK DAMAGES
RESISTANCE/WEAKNESS NUMBER FROM 0 TO 1.5 THAT IS

MULTIPLIED BY REGULAR ATTACK DAMAGE
BEFORE DAMAGE IS TAKEN BY ENEMIES.
THESE ARE BASED ON THE 4 DIFFERENT
ELEMENT ATTACKS IN THE GAME.

ATTACK BONUS INCREASES HEALTH BY BASE HEALTH AND
GRANTS A BONUS TO SPEED THAT IS FIFTY
PERCENT OF BASE SPEED. MAXIMUM OF
TWO ATTACK BONUSES PER GAMBIT.

JUMP HEIGHT 4 MOVEMENT FEET
JUMP SPEED 1 SECOND

Electric Gambit

Description
Electric Gambits are one of the four different enemy types that attack in groups against Alice.
They are based on the Electric Element aspect in the game. They path find along waypoints
and flock together to get near her and attack.

Visual Design
Height: 3 ft
Gender: Male
Main Color - YELLOW
Body Type: Short brutish trolls with large bear claws, fangs, beady eyes, a furry body and
thick limbs. The ice gambit looks similar to a badger standing upright, or a Sasquatch with
bear-like features. It is roughly humanoid, but hunched over like a hulking beast.
Hair: Sharp, spiny, with elemental coloring.
Facial Features: Sharp Elemental, snarl, swamp monster

BEHAVIORS CORRESPONDING ATTRIBUTES
MOVE TRANSLATE THE GAMBIT BY “MOVEMENT

SPEED” IN A GIVEN DIRECTION. IF WITHIN
7 FEET OF ALICE THE TRANSLATION OF THE
GAMBIT WILL BE RESOLVED WITH RANDOM
ENCIRCLING DIRECTION.

ENEMY ATTACK ENEMY TO ALICE COLLISION WILL RESULT
IN “DAMAGE” INFLICTED ON ALICE.
“HEALTH” OF GAMBIT WILL BE REDUCED
TO ZERO.

TAKE DAMAGE “HEALTH” MODIFIED BY “DAMAGE” OF
ALICE’S ATTACK, MODIFIED BY
“RESISTANCE/WEAKNESS”.

DEATH “HEALTH” REDUCED TO ZERO.
TURN ROTATE GAMBIT ALONG THE Y AXIS BY

“TURN RATE” SPEED.
EMPOWER BESTOWS “ATTACK BONUS” ON ENEMY.

ATTRIBUTES VALUES
MOVEMENT SPEED 6 MOVEMENT FEET PER SECOND
ATTACK AREA BOUNDING BOX COLLISION
TURN RATE HALF PI RADIANS PER SECOND
HEALTH 10 – 50 MAX BASED ON DIFFICULTY AND

ATTACK DAMAGES
RESISTANCE/WEAKNESS NUMBER FROM 0 TO 1.5 THAT IS

MULTIPLIED BY REGULAR ATTACK DAMAGE
BEFORE DAMAGE IS TAKEN BY ENEMIES.

 52

THESE ARE BASED ON THE 4 DIFFERENT
ELEMENT ATTACKS IN THE GAME.

ATTACK BONUS INCREASES HEALTH BY BASE HEALTH AND
GRANTS A BONUS TO SPEED THAT IS FIFTY
PERCENT OF BASE SPEED. MAXIMUM OF
TWO ATTACK BONUSES PER GAMBIT.

 53

 54

Boss Gambit

Description
The boss gambit is a large gambit generator that will move about the battlefield and summon
smaller gambits of various elemental affinities to attack Alice. He will be accessed after all the
levels have been cleared, and the battle will occur in what is considered the hub level. His
only attack is to summon additional gambits to attack Alice, although his collision with Alice still
does damage to Alice.

Visual Design
Height: 20 ft
Gender: Male
Main Color – Prismatic (Cycles through colors denoting current elemental attunement)
Body Type: Giant, translucent head that vomits out gambits. Looks like Job in Lawnmower
Man when in the virtual world.
Hair: none
Facial Features: Angry, bus lines, and translucence.

BEHAVIORS CORRESPONDING ATTRIBUTES
MOVE MOVEMENT SPEED
ENEMY ATTACK DAMAGE, ATTACK RATE, ATTACK AREA,

ATTACK BONUSES
TAKE DAMAGE HEALTH, RESISTANCE/WEAKNESS
DEATH HEALTH, RESISTANCE/WEAKNESS
TURN TURN RATE

ATTRIBUTES VALUES
MOVEMENT SPEED 6 MOVEMENT FEET PER SECOND
ATTACK AREA 0.5 MOVEMENT DISTANCE IN FRONT OF

THEM
TURN RATE HALF PI RADIANS PER SECOND
HEALTH 1000
RESISTANCE/WEAKNESS NUMBER FROM 0 TO 1.5 THAT IS

MULTIPLIED BY REGULAR ATTACK DAMAGE
BEFORE DAMAGE IS TAKEN BY ENEMIES.
THESE ARE BASED ON THE 4 DIFFERENT
ELEMENT ATTACKS IN THE GAME.

Enemy Resistance/Weakness against Attacks Model

Fire Gambit – beats wind

- Resistant Against Wind Attacks
- Weak Against Ice Attacks
- Immune and Gain Power Against Fire Attacks
- Electric Attacks Do Regular Damage

Ice Gambit – beats fire

- Resistant Against Fire Attacks
- Weak Against Electric Attacks
- Immune and Gain Power Against Ice Attacks
- Wind Attacks Do Regular Damage

Electric Gambit – beats Ice

- Resistant Against Ice Attacks
- Weak Against Wind Attacks
- Immune and Gain Power Against Electric Attacks
- Fire Attacks Do Regular Damage

Wind Gambit – beats electric

- Resistant Against Electric Attacks
- Weak Against Fire Attacks
- Immune and Gain Power Against Wind Attacks
- Ice Attacks Do Regular Damage

Defer to Interaction Component Matrix for Attack vs. Gambit Collision Interactions

 55

Attacks System and Weapons

Fire Elemental Attacks

Description
This is a power that Alice collects from fire/heat/red energy nodes, and can be used if it is the
element currently in Alice’s primary power slot. It can be used to produce fire-based primary
and secondary attacks.

Visual Design
There is no physical weapon associated with the fire elemental power. Instead, Alice’s
bodysuit will change colors to red to indicate that this is her primary weapon. Further design
of an attack is in its name and behavior.

Behaviors
Alice has several different attacks for the fire power, depending on which element is currently
in her secondary power slot.

• Basic attack: Fireball
o Cause Damage
o Move

• Secondary attack: (with Electric as secondary) Meteor
o Cause Damage
o Cause Area of Effect Damage

• Secondary attack: (with Ice as secondary) Fire breathing

o Cause Frontal Cone Damage

• Secondary attack: (with Wind as secondary) Spontaneous Combustion
o Cause Area of Effect Damage

Attributes

• Fireball
o Damage : 10
o Energy Cost: 10
o Area of effect: The fireball will travel in a straight line outward from the

direction Alice is facing. It will damage and penetrate any enemies it hits, and
will only be destroyed by colliding with a wall or the map border.

o Speed : 10 measurement feet/sec

 56

 57

• Meteor
o Damage: 7
o Energy Cost: 10primary, 10secondary
o Area of Effect Damage: 3
o Damage Radius: 5 measurement feet

• Fire breathing

o Frontal Cone Damage: 10
o Energy Cost: 10 primary, 10 secondary
o Max Range: 7 measurement feet
o Effective Area: 45 degree arc directly in front of Alice

• Spontaneous Combustion

o Area of Effect Damage: 5
o Energy Cost: 10 primary, 10 secondary
o Max Range: 7 measurement feet
o Effective Area: 360 degree circle centered around Alice

Ice Elemental Attacks

Description
This is a power that Alice collects from Ice/Coolant/blue energy nodes, and can be used if it is
the element currently in Alice’s primary power slot. It can be used to produce ice-based
primary and secondary attacks.

Visual Design
There is no physical weapon associated with the ice elemental power. Instead, Alice’s bodysuit
will change colors to blue to indicate that this is her primary weapon. Further design of an
attack is in its name and behavior.

Behaviors
Alice has several different attacks for the ice power, depending on which element is currently
in her secondary power slot.

• Basic attack: Chill Wind
o Cause Frontal Cone Damage

• Secondary attack: (with Electric as secondary) Ice Core
o Move
o Cause Area of Effect Damage

• Secondary attack: (with Fire as secondary) Glacial Spikes

o Move
o Cause Damage

• Secondary attack: (with Wind as secondary) Ice Storm
o Cause Area of Effect Damage

Attributes

• Chill Wind
o Damage : 10
o Energy Cost: 10 primary
o Max Range : 7 measurement feet
o Effective Area: 45 degree arc directly in front of Alice

• Ice Core

o Area of Effect Damage: 5. Hits are calculated once a second.
o Energy Cost: 10 primary, 10 secondary
o Speed: 4 measurement feet/sec
o Duration: 3 seconds

 58

 59

o Damage Radius: 5 measurement feet

• Glacial Spikes
o Damage : 10
o Energy Cost: 10 primary, 10 secondary
o Area of effect: The glacial spikes will travel in a straight line outward from the

direction Alice is facing. It will damage and penetrate any enemies it hits, and
will only be destroyed by colliding with a wall or the map border.

o Speed : 10 measurement feet/sec

• Ice Storm
o Area of Effect Damage: 5
o Energy Cost: 10 primary, 10 secondary
o Max Range: 7 measurement feet
o Effective Area: 360 degree circle centered around Alice

Wind Elemental Attacks

Description
This is a power that Alice collects from air/fan/green energy nodes, and can be used if it is the
element currently in Alice’s primary power slot. It can be used to produce air-based primary
and secondary attacks.

Visual Design
There is no physical weapon associated with the wind elemental power. Instead, Alice’s
bodysuit will change colors to green to indicate that this is her primary weapon. Further
design of an attack is in its name and behavior.

Behaviors
Alice has several different attacks for the wind power, depending on which element is currently
in her secondary power slot.

• Basic attack: Gust
o Cause Area of Effect Damage

• Secondary attack: (with Ice as secondary) Siren Scream
o Cause Frontal Cone Damage

• Secondary attack: (with Fire as secondary) Sonic Wave

o Move
o Cause Damage

• Secondary attack: (with Electric as secondary) Tornado Storm
o Cause Area of Effect Damage

Attributes

• Gust
o Area of Effect Damage: 7.
o Energy Cost: 10 primary
o Max Range: 7 measurement feet
o Effective Area: 360 degree circle centered around Alice

• Siren Scream

o Damage : 10
o Energy Cost: 10 primary, 10 secondary
o Max Range : 7 measurement feet
o Effective Area: 45 degree arc directly in front of Alice

 60

 61

• Sonic Wave
o Damage : 10
o Energy Cost: 10 primary, 10 secondary
o Area of effect: The Sonic Boom will strike in a straight line outward from the

direction Alice is facing. It will damage and penetrate any enemies it hits, and
will only stop by colliding with a wall or the map border.

o Speed : 10 measurement feet/sec

• Tornado Storm
o Damage: 5. Hits are calculated every second.
o Energy Cost: 10 primary, 10 secondary
o Damage Radius: 5 measurement feet
o Duration: 3 seconds

Electric Elemental Attacks

Description
This is a power that Alice collects from lightning/electric/yellow energy nodes, and can be used
if it is the element currently in Alice’s primary power slot. It can be used to produce lightning-
based primary and secondary attacks.

Visual Design
There is no physical weapon associated with the electric elemental power. Instead, Alice’s
bodysuit will change colors to yellow to indicate that this is her primary weapon. Further
design of an attack is in its name and behavior.

Behaviors
Alice has several different attacks for the electric power, depending on which element is
currently in her secondary power slot.

• Basic attack: Electrocute
o Cause Damage
o Cause Area of Effect Damage

• Secondary attack: (with Fire as secondary) Lightning Bolts
o Move
o Cause Damage

• Secondary attack: (with Ice as secondary) Ball Lightning

o Cause Frontal Cone Damage

• Secondary attack: (with Air as secondary) Electric Field
o Cause Area of Effect Damage

Attributes

• Electrocute
o Damage: 7
o Energy Cost: 10 primary
o Area of Effect Damage: 3
o Damage Radius: 5 measurement feet

• Lightning Bolts

o Damage : 10
o Energy Cost: 10 primary, 10 secondary

 62

 63

o Area of effect: The Lightning Bolts will strike in a straight line outward from
the direction Alice is facing. It will damage and penetrate any enemies it hits,
and will only stop by colliding with a wall or the map border.

o Speed : 10 measurement feet/sec

• Ball Lightning
o Damage : 10
o Energy Cost: 10 primary, 10 secondary
o Max Range : 7 measurement feet
o Effective Area: 45 degree arc directly in front of Alice

• Electric Field

o Area of Effect Damage: 5. Hits are calculated each second
o Energy Cost: 10 primary, 10 secondary
o Max Range: 7 measurement feet
o Effective Area: 360 degree circle centered around Alice
o Duration: 3 seconds

Power-ups

Shield

Brief Description
This power-up allows for the player to take one melee attack from an enemy and not lose any
health.

Visual Design
The shield will be a highly specular bubble around Alice. It will be slightly elongated in its
height to more closely fit Alice’s shape and dimensions. This bubble-like shield will be mostly
transparent, but will give some reflection of the surrounding environment.

Behaviors
Absorb – Shield takes the damage instead of the player
Activate – Shield encompasses Alice and can now redirect one hit.

Attributes
Amount – Shield absorbs one hit.
Score Activate – 5000 points activates a shield.

 64

Levels and Maps

Common Level Traits

Level Travel
In all of the levels the player will be free roaming. The player will travel at a speed of 9 feet
per second. The gambits will travel at a speed of 6 feet per second when they are not
empowered. When they have one level of empowerment their speed will be boosted to 9 feet
per second. When they have their second level of empowerment they will move at a speed of
12 feet per second.

Ambient Environmental Aspects/Objects in the Level
Transitions –
The camera will swoop in behind the player to start the level.

Particle Effects –
An electrical effect – this will be used to put on the walls an floor to give a sense of life to the
computer components. It will be a self-contained electric spark similar to games like Mega
Man, in which it travels across the surface slowly.

Fire effect – This will be used for fire type nodes to clearly define to the player which type it is.
It will be a red-colored smoke effect that travels upwards.

Ice effect – This will be used for ice type nodes to clearly define to the player which type it is.
It will be a blue-white colored mist that spreads outward slowly away from the node.

Wind effect – This will be used for wind type nodes to clearly define to the player which type it
is. It will be a green-grey swirling smoky wind that circles the node.

Electric effect – This will be used for electric type nodes to clearly define to the player which
type it is. It will be a yellow-white sparkling that resembles a Tesla coil.

Shader –
Glow – A bright neon-ish glow so that the ‘circuitry’ in the world will stand out much more in
the dark world.

Sounds –
Electric Crackle – Accompanies the electric particle effect, give it a better sense of realism.

Start level – This sound will be used to signify the start of the level.

End level – This sound will be used to signify the end of the level.

 65

 66

Objects-
Memory Chip – This will be the visual representation of our first level. It will resemble a
typical RAM chip found in today’s computers, with the black memory nodules attached to the
side, green silicon, and brass connectors.

Power Grid – This will be the visual representation of our second level. It will be a pulsating
ball surrounded by a cage. Vertical poles will extend from the top and bottom, essentially
anchoring it to the level.

CPU – This will be the visual representation of our third level. It will be a fortress-like
structure, large and rectangular in shape. It will have a black base, upon which sits a silver
heat sink and a fan.

Capacitors – This will be just used for style in our level. They will be small red, black, or
yellow cylinders, with connection wires extending out from either side that will “plug” into the
floor. They will sit lengthwise on the floor.

Data Tower – This will be used for visual style within the level. It will be a pulsating vertical
tower with slats at uniform segments running horizontally up the tower. It will look similar to
the stylized data storage towers seen in the virtual segments of the movie Hackers.

Box – This will be used as a platform for Alice to jump on to escape the Gambits. It will be a
simple rectangular piece of geometry textured with bus lines and outlined with neon edges.

Ramp – This will be used to access platforms that are too high for Alice to jump onto. They
will have the same texture as the boxes, and also share the neon edge highlighting.

Catwalk – This is a small bridge between platforms. It will be a green translucent bridge
structure with neon edging and highlighted designs.

Curved wall – This will be used to create choke points within our level. (This will only be used
on level 3). They will be vertical curved structures with a whitish hue to them. They will be
translucent to allow the player to strategize even while surrounded by the walls.

Neutral Hub

Goal
At the beginning of the game this level will teach the player about nodes and also how to use
nodes. It also serves as a neutral area for the player to rest and recharge in between levels,
so there will be no threat to the player until the boss phase. This level has 3 entrances to the
other levels; the player must finish all 3 levels before moving on to the boss fight. After the
player has conquered the other three levels then this level will become the battleground
between the player and the final boss. (See Final Boss Level)

Scale
In Maya one unit is equivalent to 1 foot.
Metrics for the level are
Height: 20 feet
Depth: 133 feet
Width: 172 feet

Time
The goal of this game should take 9 minutes. This is estimated since it depends on how fast
the player completes the 3 levels of the game.

 67

 68

Map

Level Walkthrough – Verbal Map

• Enter the level
o Player will have no power in their primary or secondary power bars, but will

have 3 hits worth of life.
• Tutorial Segment

o Player is introduced to basic movement via voice instruction/text messages.
o Player is introduced to elemental powers by draining power from one of the

four nodes located in the corners of the map.
o Both primary and elemental powers will be drained and both primary and

secondary attacks will be tested. The combination of elements is left up to the
player.

o Player is informed of the structure of the game, shown the entrances to the
three levels, and is given the opportunity to enter level 1.

• Free Play Segment
o At this point the game will not continue until the player has entered level 1.

The player is free to wander around the hub map and practice any moves they
want. They are also free to mix and match the elemental powers to find the
one that suits them the best.

o Level 1 is entered by colliding with the RAM geometry that is located on the
left side from the player’s start position.

 69

Memory Level

Goal
The main goal of this level is to take out the security gambits guarding the memory core of the
system. The player will accomplish this by slaying 100 enemies in the level.

Scale
In Maya one unit is equivalent to 1 foot.
Height: 20 feet
Depth: 112 feet
Width: 207 feet

Time
The expected time to complete this level is 3 minutes.

 70

Map

 71

Level Walkthrough – Verbal Map

• Enter the level
o Player will have full hit points and will have any powers they decided to bring

with them from the hub into the level.
• Attack Sequence

o After a five second pause, enemy gambits in various single colored groups will
begin spawning at random spawn points around the perimeter of the level, but
never so close to Alice that she cannot avoid being hit by a spawning gambit.
The gambits will continuously spawn until the maximum saturation for the level
is reached. Gambits spawn in squads, with each squad containing 5-6
gambits. Spawn points will only be able to initiate a squad spawn every 4
seconds. The maximum saturation for this level should be sitting at around
35-40 gambits at once.

o It is now up to Alice to eradicate the gambits before they overwhelm her.
Enemy gambits will stop spawning once Alice has eliminated 300 gambits, but
she still has to eliminate the remaining gambits still present on the map.

o There are platforms along the right hand wall that Alice can use as temporary
safety spots against the onslaught. It will only provide a brief reprieve from
the attacks, as the wind gambits can jump and the others will circle around
and attack her by traveling up a ramp.

o Eventually Alice will need to seek out more power for her attacks. There are
four nodes that correspond to the four different elements. Two of the nodes
require Alice to traverse the ramp and platform system dominating the center
of the map since the nodes are located on platforms that are too high for Alice
to reach in a jump.

• Blitz Sequence
o After all the attack sequence gambits have been eliminated a blitz sequence

will begin immediately.
o 50 gambits of mixed colors will spawn at random spawn points around the

perimeter of the map and rush toward Alice. The gambits will all spawn at
once in squads of about 7-10.

o This will be more difficult because the gambits will mix their colors which will
increase the likelihood that Alice will empower some.

o Once the blitz sequence gambits have all been destroyed the level will end and
Alice will exit the level back to the hub. Level 2 will then become available to
play.

 72

Power Grid

Goal
The goal of this level is for the player to shut down the power grid for the system. The player
will accomplish this by slaying 130 enemies that will spawn in waves.

Scale
In Maya one unit is equivalent to 1 foot.
Height: 20 feet
Depth: 140 feet
Width: 140 feet

Time
The expected time to complete this level is 3 minutes.

 73

Map

 74

Level Walkthrough – Verbal Map

• Enter the level
o Player will have full hit points and will have any powers they decided to bring

with them from the hub into the level.
• Attack Sequence

o After a five second pause, enemy gambits in various single colored groups will
begin spawning at random points around the perimeter of the level, but never
so close to Alice that she cannot avoid being by a spawning gambit. The
gambits will continuously spawn until the maximum saturation for the level is
reached. Gambits spawn in squads, with each squad containing 5-6 gambits.
Spawn points will only be able to initiate a “squad” spawn every 4 seconds.
The maximum saturation for this level should be sitting at around 55-60
gambits at once.

o It is now up to Alice to eradicate the gambits before they overwhelm her.
Gambits will continue to spawn until Alice has defeated 400 total. Alice still
has to eliminate the remaining gambits on the map to end the attack
sequence.

o There are towers located around the perimeter of the level that Alice can
weave between to avoid pursuing gambits.

o Eventually Alice will need to seek out more power for her attacks. There are
four nodes that correspond to the four different elements. Two of the nodes
are near the northeast and southeast corners. The other two are located in
the center of the arena on top of a small structure. Ramps and platforms circle
the structure allowing Alice and gambits to reach the top.

• Blitz Sequence
o After all the attack sequence gambits have been eliminated a blitz sequence

will begin immediately.
o 75 gambits of mixed colors will spawn at random points around the perimeter

of the map and rush toward Alice. All the gambits will spawn immediately in
squads of about 7-10

o This will be more difficult because the gambits will mix their colors which will
increase the likelihood that Alice will empower some.

o Once the blitz sequence gambits have all been destroyed the level will end and
Alice will exit the level back to the hub. Level 3 will then become available to
play.

 75

Hard Drive Level

Goal
The main goal for this level is to corrupt the boot sector of the systems hard drive. The player
will accomplish this by slaying 175 enemies in the level.

Scale
In Maya one unit is equivalent to 1 foot.
Height: 20 feet
Depth: 197 feet
Width: 197 feet

Time
The expected time to complete this level is 3 minutes.

Map

 76

Level Walkthrough – Verbal Map

• Enter the level
o Player will have full hit points and will have any powers they decided to bring

with them from the hub into the level.
• Attack Sequence

o After a brief pause, enemy gambits in various single colored groups will begin
spawning at random points around the perimeter, and center, of the level, but
never so close to Alice that she cannot avoid being by a spawning gambit. The
gambits will continuously spawn until the maximum saturation for the level is
reached. Gambits spawn in “squads”, with each squad containing 5-6
gambits. Spawn points will only be able to initiate a “squad” spawn every 4
seconds. The maximum saturation for this level should be sitting at around
75-80 gambits at once.

o It is now up to Alice to eradicate the gambits before they overwhelm her.
Gambits will continue to spawn until Alice has eliminated 500 total, although
she cannot finish the attack sequence until all the remaining gambits on the
map have been eliminated.

o There are only ramps in the center of the arena that Alice can use to get onto
low platforms for a brief respite from the assault. It will only provide a
minimum of defense from the attacks, as the wind gambits can jump and the
others will circle around and attack her by traveling up a ramp.

o Eventually Alice will need to seek out more power for her attacks. There are
five nodes that correspond to the four different elements. Four of the nodes
are located in each of the four corners. They are surrounded by a roughly
semicircular placement of geometry that provides an enclosure for the node.
It will be dangerous for Alice to hesitate too long at one of these nodes due to
its single exit.

o A single node is located in the center of the map, but it is close to two enemy
spawn points so it is a dangerous place to be.

 77

 78

• Blitz Sequence
o After all the attack sequence gambits have been eliminated a blitz sequence

will begin immediately.
o 100 gambits of mixed colors will spawn at random points around the perimeter

of the map and rush toward Alice. They will all spawn immediately in squads
of about 7-10.

o This will be more difficult because the gambits will mix their colors which will
increase the likelihood that Alice will empower some.

o Once the blitz sequence gambits have all been destroyed the level will end and
Alice will exit the level back to the hub. At this point the boss fight will
commence.

Final Boss

Goal
The goal of this level is to defeat the final boss and corrupt the CPU he is protecting.

Scale
In Maya one unit is equivalent to 1 foot.
Height: 20 feet
Depth: 133 feet
Width: 172 feet

Time
The time limit for this final boss encounter will take a maximum of 4 minutes depending on the
player’s skill.

Map

 79

Level Walkthrough – Verbal Map

• Enter the level
o Player will have full hit points and be carrying any powers they have left over

from level 3.
o This level is the same geometrically as the hub level.

• Boss Fight
o At this point the boss will spawn in front of the player in the center of the hub

map.
o The boss does not have attacks of his own, but spawns groups of gambits

about 7-10 strong every 10 seconds and chases the players around the room
to increase the difficulty. The maximum gambit saturation for this final boss
level is 100 gambits at once.

o The player can draw power from each of the nodes in the four corners in order
to combat the boss and the gambits he spawns.

o All elemental power works on the boss at various points, but the boss will
change the element he is currently attuned to every 20 seconds. The player
must respond by watching the color of the boss and attacking with a power
that will do damage. The boss should take a competent player about 2
minutes to defeat.

 80

 81

o Once the boss is destroyed the player will have won the game.

Combat System

Combat in Super Power Surge Spike is designed to be fast-paced FPS style twitch gameplay.
Woven into this hyperkinetic action is a light amount of strategy in the form of combining
elemental powers. These powers, drawn from nodes strewn about the map, are the sole form
of attack that Alice has at her disposal. Attacking uses some of Alice’s stored energy, forcing
players to continue moving about the map to a new node in order to replenish their powers.
The game is played in a 3rd person perspective and everything happens in real-time. This is to
allow the player a greater view of the battleground than is available with 1st person
perspective, and also to satisfy the fast nature of an arcade title.

Sixteen different attacks are available for Alice to use, but she is limited in her use of them by
which elements she currently has energy for in her primary and secondary power bars. For
every attack that she makes, an amount of energy is drained from her primary power bar, and
possibly her secondary power bar. The rule is that no primary attack can be made without a
requisite amount of energy in the primary power bar, and no secondary attack can be made
without a requisite amount of energy in both the primary and secondary power bars. All
damage that occurs will always be attuned to the element currently in Alice’s primary power
bar.

The enemies of the game are small swarming entities called gambits. They have no defined
attack action, but if they collide with Alice she will take damage. The basic strategy of their
assault is to overwhelm Alice with their numbers and mix of elemental affinities. Gambits by
themselves are relatively harmless, only taking a hit or two before they reach the death state.
If they are empowered by an attack of their associated element, they gain a speed and health
bonus. The gambit will also be scaled up in size to provide a visual clue to its increased
combat potential. This will force Alice to focus on downing the empowered gambit(s) as
quickly as possible.

Damage is calculated based on the element of the attack and the element of the gambit.
Creatures weak to the attack of an element will take double damage. Creatures strong against
an attack will take half damage. Creatures neither weak nor strong to an attack will take
normal damage. Creatures sharing the same element with the attack will take no damage,
instead entering into an empowerment state. There will be two levels of empowerment for a
gambit, ultimately resulting in a tripling of their health and a doubling of their speed. If a
gambit loses all health, it will die and be removed from the game field. 100 points multiplied
by the current score multiplier will be added to Alice’s score for each kill she makes.

The different types of attacks will utilize different attack patterns based on the elements that
Alice is currently storing in her primary and secondary power bars. Fire exhibits straight line
damage with range that extends until it collides with a wall or obstacle. Ice exhibits cone-
shaped damage that extends out to a certain range in front of Alice. Wind exhibits 360 degree
area of effect damage within a certain radius. Electric exhibits a chaining effect, causing

 82

 83

additional splash damage to any enemy within a certain range around the point at which it
collides.

Alice’s attacks will always have priority in hit detection, but if her life is depleted then she will
die. Players can postpone death from damage by skillful playing. A score chain of 5000
uninterrupted points grants Alice a shield which will absorb one additional hit. Alice can gain
multiple shields over the course of the game, but only one shield can be active on her at any
given time.

Score Multiplier

Overview
The score multiplier is meant to allow for seasoned or skilled players to rack up much higher
scores than novices. Making use of the multiplier is the only way you can achieve the only
power up in our game: the shield.

Mechanics
The score multiplier is determined by how many enemies have been killed without being hit.

The amount of enemies necessary to kill will be determined by the Fibonacci sequence.

If the player is hit the score multiplier resets, also the number of enemies necessary to kill to
advance the multiplier is reset. This hit includes the shield absorbing an attack.

Example:
For a player to get a score multiplier of 4x one would need to kill 11 enemies
total. 1(to seed the sequence, not included in kill count), 1, 2, 3, 5.

 84

 85

Node System

Overview
Nodes are the source of Alice’s power. Each power node is one of the four elemental types:
fire, electric, ice, and wind. Nodes charge your primary or secondary power based on
proximity to the node.
Mechanics
The maximum charge for a node is 100, and it can go no less than zero. This 100 is the same
amount as Alice can hold in one power bar. Once a node is at zero it cannot be charged from
again until it has regenerated more power.

Alice can continue to charge from a node as long as she’s within a 20 foot radius from the
node.

Nodes drain rate –

25 * [(20 foot / Drain Distance) CLAMPED between 0.0 and 1.0]

Nodes recharge rate –
 While the player is charging from a node, that node will not regenerate any of its
power. If a player isn’t charging from a node and that node doesn’t have a full charge, then
the node will regenerate at three power per second.

Game Logic, Algorithms, and Rules

Interaction Component Matrix

Separate File Name: br_SSPS_ICMFinal.xls

Key Game Algorithms
Fibonacci scoring method –
Enemies needed to advance multiplier = previous number to advance + number needed to
advance to current level, number > 1
if number == 1 then Enemies needed to advance multiplier = 1

Damage dealt to player –
if (!shield)
{
 player health--;
}
else
{
 remove shield;
}

Damage dealt to enemy –

if (enemy_type != damage_type)
{
 if (enemy_weakness == damage_type)
 {
 enemy health -= (elemental damage * 2)
 }
 enemy health -= elemental damage
}
else
{
 enemy speed += (BaseSpeed * 0.5f)
 enemy health = (currentMaxHealth + BaseHealth)
}
Charge from node-
This formula checks when the player starts charging if they already have a charge in that bar.
If they don’t just, just start filling that charge per the drain rate formula. If they already have
power in the bar they want to start filling, and if the elemental type they are starting to charge

 86

 87

is different than the power they already have, then clear the bar and start charging per the
drain rate formula.

if (powerBar has no charge || powerBar has charge but it is the same elemental type)
{
powerBar = 25 * [(20 Movement feet / Drain Distance) CLAMPED between 0.0 and 1.0]
}
else
{
//clear the bar of its current charge
powerBar = 0;
//start charging the bar.
powerBar = 25 * [(20 Movement feet / Drain Distance) CLAMPED between 0.0 and 1.0]

}

FAQ

Q: Are there any check or save points in your game?
A: No, we feel the rhythm and speed of the game is best accentuated by a harsh penalty for
death.

Q: Who is the target audience for this game?
A: We believe this game will be best marketed towards males age 15 to 25. We are trying to
carve a niche in the strategic action game market.

Q: What will the system requirements for your game be?
A:

Operating System: Windows XP
RAM: 128 mb
Processor: 1 GHz
HDD Space: 1GB
Video Card: 64 MB DirectX 9.0-compliant card with
 Shader Model 2.0 or higher.
Sound Card: DirectX 9.0 Compliant Sound Card
Input: Keyboard and Mouse

Q: Does this game support a multiplayer mode?
A: As of now we have no plans of implementing a multiplayer mode. We feel that this game is
better suited for single player only.

Q: Will there be any maintenance after the game goes gold?
A: There currently is no plan of further development after our 5 month development cycle
ends. This is not set in stone though.

Q: What graphics API does this game use?
A: Our game makes use of DirectX 9.

Q: How does a player die in your game?
A: A player dies when they are overwhelmed by gambits and get hit by their melee attacks
enough times to drain their health to zero.

 88

Q: Are there any cheat codes?
A: No, if we were to implement cheat codes it would make our scoring system irrelevant.

Q: Does your game store high scores?
A: Yes, we believe that by storing high scores it promotes competition and a desire to have the
best score. This will be paramount for maintaining our game’s replay value.

Q: Are their any power-ups in the game?
A: No, power-ups cause people to go out and actively search for them. This will severely hurt
the pacing of our game.

 89

Reference of Key Elements

Scoring
All enemies will provide 100 points to the player’s current score upon being killed. To increase
the point gain there is a combo multiplier system that grows along with the amount of enemies
killed within the game. The multiplier simply multiplies the score gain from an enemy by the
value of the multiply to calculate the total score for that kill. If a player is hit the combo
returns back to one. If the score is a high enough amount, it will be added to an in game high
score table.

Winning/Losing
To win the player needs to destroy all sections within a computer. To destroy each section the
player needs to also destroy all the enemies within it. When this goal has been reached the
master virus protection program will arise on the mother board and need to be destroyed in
order to win the game.

To lose, the player must be overwhelmed by the gambits and be hit enough times to drain all
health from the meter.

Transitions
There is no saving/checkpoints and therefore also no loading a saved game. Loading of the
menu will be hidden by the studio/team boot up screen, and loading of the game will be
hidden by a screen showing controls. Entering into each section will cause the camera to
swoop in behind the avatar to show the new room before returning control back to the player.

Rewards
The greatest reward for playing skillfully is being placed on the high score table. In game the
reward will be just watching the score rise as multipliers are earned.

Another bonus to encourage new ways of playing is our achievement system.

List of achievements (subject to change):

1. Tier three: Get a multiplier of 8
2. Tier three: Get a multiplier of 15
3. Should Have Gone Linux: Beat the game
4. Power User: Win under ten minutes
5. One Track Mind: Use only two elements to beat a level
6. OverKill: Only use secondary attacks in a level
7. Skill Shot: Never hit a enemy with a element they are strong too
8. Evasive: Beat a level while not taking a single hit
9. Bit: Kill ten enemies
10. Byte: Kill 100 enemies

 90

Art and Production Design

3D Art & Animation Deliverables

Meshes
br_Alice.x – This is our main character Virus Alice. She is a voluptuous female AI humanoid
looking to be about 6 ft. tall. She is wearing a skin-tight bodysuit with “veins” on it that
resemble bus lines. She moves with catlike fluidity
 Animations:

• Idle
• Run
• Jump
• Charge power
• Attack
• Death
• Hit
• Fall

br_Gambit.x – This is the mesh we are using for our enemies. It is half the height of Alice and
is a hunched feral creature like a wolverine or troll. It is a mindless suicidal beast that scurries
toward you like a swarm of army ants.
 Animations:

• Jump
• Move
• Hit
• Death

br_Boss.x – This is our boss character that is going to appear in the main hub area after all 3
levels have been cleared. He is a large disembodied head that floats around and vomits
gambits at the player.
 Animations:

• Walk
• Attack
• Death
• Roar

br_Platform01.x – These will be used by Alice as a way to escape approaching enemies and
also to lend variety to the levels. It will be a plain rectangular prism piece of geometry with a
circuit board texture and neon edge highlights.

br_Platform02.x – These will be used by Alice as a way to escape approaching enemies and
also to lend variety to the levels. It will be a plain rectangular prism piece of geometry with a
circuit board texture and neon edge highlights.

 91

 92

br_Platform03.x – These will be used by Alice as a way to escape approaching enemies and
also to lend variety to the levels. It will be a plain rectangular prism piece of geometry with a
circuit board texture and neon edge highlights.

br_Platform04.x – These will be used by Alice as a way to escape approaching enemies and
also to lend variety to the levels. It will be a plain rectangular prism piece of geometry with a
circuit board texture and neon edge highlights.

br_Ramp01.x – These will be used to get up onto some platforms and also for the gambits
that don’t fly to still reach Alice with. It will be an inclined plane with a circuit board texture
and neon edge highlights.

br_Ramp02.x – These will be used to get up onto some platforms and also for the gambits
that don’t fly to still reach Alice with. It will be an inclined plane with a circuit board texture
and neon edge highlights.

br_Node.x – This is the power node that Alice can draw energy from for her attacks. It will be
a small vertical cylinder with a widened base and a flattened end cap. The center of the
cylinder will resemble clear glass, allowing the player to visually recognize the element of the
node and approximately how much energy is left.

br_MemoryChip.x – This is visual flair to add flavor to the level. It will resemble a real-life
memory chip with black rectangular data banks, brass connectors, and green silicon.

br_Cpu.x – This is visual flair to add flavor to the level. It will have a black square base, silver
heat sink with vertical slats, and a fan on top.

br_Capacitor.x – this is visual flair to add flavor to the level. It will be a small cylinder lying on
its side, colored red, yellow, or blue. It will have wires coming out the ends of the cylinder,
“plugging” into the floor.

br_DataTower.x – this is visual flair to add flavor to the level. It will be a pulsating vertical
tower with slats at uniform segments running horizontally up the tower. It will look similar to
the stylized data storage towers seen in the virtual segments of the movie Hackers.

2D Art (HUD/Menu/Particle/Textures) Deliverables

br_MenuBackground.png – This is the background we will use for the menus. It
will have an electronic feel and will have a blue color scheme. See the mock-ups
for the general look and feel.

br_LoadScreen.png – This is the background we will use for the load screen. It
will feature a picture of Alice on a limbo background. Refer to mock-ups for the
general look and feel.

br_BitmapFonts.png – This is the font that we will be using for the game. It will
have sharp angles and hard edges to emphasize the futuristic tone of the game.

br_Hud.png – This is the HUD overlay that will be used during the game. It will
be minimalistic in nature, simply having borders for the power bars, and a
standard green radar.

br_AliceTex.png – This is Alice’s avatar texture. She will be a beautiful young
woman in skin tight bodysuit. The suit will have “veins” that resemble bus lines
that will glow the secondary element color.

br_GambitTex.png – This is the gambit’s texture. It will look feral and ragged,
like an angry badger.

br_BossTex.png – This is the boss texture. It will have some translucence and
neon glow to it, as it represents a ghostly head that is the heart of the computer
system Alice is attacking.

br_GroundTex.png – This is the texture we will use for the ground plane. It will
resemble a circuit board, with bus lines that travel across it.

br_Platform1Tex.png – This is the texture for br_Platform01.x mesh. It will
resemble a circuit board with bus lines.

br_Platform2Tex.png – This is the texture for br_Platform02.x mesh. It will
resemble a circuit board with bus lines.

 93

br_Platform3Tex.png – This is the texture for br_Platform03.x mesh. It will
resemble a circuit board with bus lines.

br_Platform4Tex.png – This is the texture for br_Platform04.x mesh. It will
resemble a circuit board with bus lines.

br_Ramp01Tex.png – This is the texture for the br_Ramp01.x mesh. It will
resemble a circuit board with bus lines.

br_Ramp02Tex.png – This is the texture for the br_Ramp02.x mesh. It will
resemble a circuit board with bus lines.

br_NodeTex.png – This is the texture for the br_Node.x mesh. It will have metal
end caps and base, with a “clear” central cylinder that will be colored to show
the appropriate elemental affinity of the node.

br_MemoryChipTex.png – This is the texture for the br_MemoryChip.x mesh. It
will resemble a standard memory chip with green silicon, black data banks, and
brass connectors.

br_CpuTex.png – This is the texture for the br_Cpu.x mesh. It will be a black
plastic base, silver heat sink with vertical slats, and white fan on top.

br_CapacitorTex.png – This is the texture for the br_Capacitor.x mesh. It will be a
small cylinder lying on its side, colored red, yellow, or blue. It will have wires coming out the
ends of the cylinder, “plugging” into the floor.

br_DataTowerTex.png – This is the texture for the br_DataTower.x mesh. It will
be a pulsating vertical tower with slats at uniform segments running horizontally
up the tower. It will look similar to the stylized data storage towers seen in the
virtual segments of the movie Hackers.

br_SkyBoxCeilingTex.png – This is the ceiling texture for the skybox. It will
resemble the gentle pulsing innards of a computer system. Circuitry will be
visible, but it will be faded to appear distant.

 94

 95

br_SkyBoxLeftTex.png – This is the left wall texture for the skybox. It will
resemble the gentle pulsing innards of a computer system. Circuitry will be
visible, but it will be faded to appear distant.

br_SkyBoxRightCeilingTex.png – This is the right wall texture for the skybox. It
will resemble the gentle pulsing innards of a computer system. Circuitry will be
visible, but it will be faded to appear distant.

br_SkyBoxFrontCeilingTex.png – This is the front wall texture for the skybox. It
will resemble the gentle pulsing innards of a computer system. Circuitry will be
visible, but it will be faded to appear distant.

br_SkyBoxBackCeilingTex.png – This is the back wall texture for the skybox. It
will resemble the gentle pulsing innards of a computer system. Circuitry will be
visible, but it will be faded to appear distant.

br_SkyBoxGroundCeilingTex.png – This is the floor texture for the skybox. It will
resemble the gentle pulsing innards of a computer system. Circuitry will be
visible, but it will be faded to appear distant.

br_FirePart.png – This is the particle image used for fire attacks. It will look like
roiling, burning flames.

br_IcePart.png - This is the particle image used for ice attacks. It will resemble
the cold freezing mist that comes off of dry ice.

br_WindPart.png - This is the particle image used for wind attacks. It will look
like sharp streaks of wind with thin black lines similar to motion lines used in
cartoons.

br_ElectricPart.png - This is the particle image used for electric attacks. It will be
a bright sparking flare of light that moves chaotically about.

Sound Effects Deliverables

br_FireSound.ogg – This is the sound we will use for fire attacks. It will sound like a burning
fire.

br_IceSound.ogg – This is the sound we will use for the ice attacks. It will sound like cracking
glaciers

br_WindSound.ogg- This is the sound we will use for the wind attacks. It will sound like a
windy day.

br_ElectricSound.ogg – This is the sound we will use for the electric attacks. It will sound like
electricity arcing off a generator.

br_AliceJump.ogg – This is the sound we will use for Alice jumping. It will be a short gasp of
exertion.

br_AliceAttack01.ogg – This is the sound we will use for Alice attacking. It will be a shouting
grunt of exertion like karate fighters do.

br_AliceAttack02.ogg – This is the sound we will use for Alice attacking. It will be a shouting
grunt of exertion like karate fighters do.

br_AliceLaugh01.ogg – This is the sound we will use for Alice attacking. It will be a devilish
high-pitched laugh.

br_AliceLaugh02.ogg – This is the sound we will use for Alice attacking. It will be a powerfully
malevolent cackle.

br_AliceHit01.ogg – This is the sound we will use for Alice being hurt. It will be a grunt of
pain.

br_AliceHit02.ogg – This is the sound we will use for Alice being hurt. It will be a squeal of
pain.

br_AliceDeath01.ogg – This is the sound we will use for Alice dying. It will be a wail of agony
that devolves into electronic static.

br_AliceDeath02.ogg – This is the sound we will use for Alice dying. It will be a prolonged
“Ahhhhhhh” sound.

br_AliceTaunt01.ogg – This is the sound we will use for Alice completing a level/chaining a lot
of kills. It will be spoken dialogue of “You call this security?” followed by a short laugh of
derision.

 96

br_AliceTaunt02.ogg – This is the sound we will use for Alice completing a level/chaining a lot
of kills. It will be spoken dialogue of “What a rush!” spoken with exhilaration.

br_AliceTaunt03.ogg – This is the sound we will use for Alice completing a level/chaining a lot
of kills. It will be spoken dialogue of “Shall we dance?” spoken mockingly.

br_AliceIdle01.ogg – This is the sound we will use when the player has not made any actions
for a short period. It will be spoken dialogue of “Come on!” spoken impatiently.

br_AliceIdle02.ogg – This is the sound we will use when the player has not made any actions
for a short period. It will be spoken dialogue of “Keep ignoring me and see what happens”
spoken with anger.

br_GambitGrunt01.ogg – This is the sound we will use for gambits swarming to attack. It will
be a feral growl mixed with electronic static.

br_GambitGrunt02.ogg – This is the sound we will use for gambits swarming to attack. It will
be a feral growl mixed with electronic static.

br_GambitDeath01.ogg – This is the sound we will use for gambit death. It will be an
electronic static mixed with a small explosive sound.

br_GambitDeath02.ogg – This is the sound we will use for gambit death. It will be a feral
squeal of pain.

br_BossLaugh01.ogg – This is the sound we will use for the boss laughing. It will be a deep
electronic rumble like Jabba the Hutt.

br_BossLaugh02.ogg – This is the sound we will use for the boss laughing. It will be a deep
bass laugh.

br_BossAttack01.ogg – This is the sound we will use for the boss attacking. It will be a primal
roar.

br_BossAttack02.ogg – This is the sound we will use for the boss attacking. It will be a
scream of rage.

br_BossHurt01.ogg – This is the sound we will use for the boss being hurt a good amount. It
will be a deep bellow of pain.

br_BossHurt02.ogg – This is the sound we will use for the boss being hurt a good amount. It
will be an enraged roar of defiance.

 97

 98

br_BossDeath.ogg - This is the sound we will use for the boss being killed. It will be a long
drawn out mix of explosions, electronic static, and primal roaring.

Music Deliverables
br_BackgroundLayer01.ogg – This should be a very mellow relaxed ambient techno. This will
be used when Alice is out of danger, and there is no pending threat against her.

br_BackgroundLayer02.ogg – This will be laid over the ambient techno background song. It
should be slightly more frantic using a lot more mid and treble sounds. This will be used when
Alice faces a just a few enemies but is in no immediate danger of being overrun.

br_BackgroundLayer03.ogg – This will also be laid on top of the existing layers. It should make
the player feel the impending death. The layer should contain a lot of aggressive sounds, and
it should make use of a lot of bass. This will only be used when there is an immediate chance
of being overrun and killed.

Br_MenuLoop.ogg – This will only be used to accompany menus. It should have a very similar
feel to br_BackgroundLayer01.ogg, but still have a subtle sense of urgency. This music should
incite a ‘calm before the storm’ emotion within the player.

Br_GameOver.ogg – This will be used during credits and game over. The style is style in the
same vein as ambient techno, but should incite some sense of sorrow.

 99

Technical Document

 100

Overview
This document is intended to be used as a set of guidelines for the technical production of
SPSS. It is meant to be looked back at before coding a new module; if there is a question
about coding standards; or if there is confusion about the file hierarchy. If there is ever a
question about any technical aspect of the game this document is to be looked at before
asking team members or outside help.
Team Booty Rock’s philosophy is that of extensive integration testing, nightly builds, and
minimal commenting and naming conventions. While the naming and commenting might be
minimal we believe it is enough to keep our coding efforts cohesive and unified. While Booty
Rock believes tech is important we always put game play as a higher priority. Keeping this in
mind if gameplay is lacking in most cases our first reaction is to drop non-vital tech to fix the
gameplay issues. Outside the scope of this project we may use this document to show to
future employers. This future prospect of employer’s eyes will not affect the way we organize
and write this document. It is, after all, for our use to develop the best game possible.

 101

Coding Standards

Naming Standards
Naming standards are put into place to mitigate confusion if other people have to look at
foreign code, or the coder hasn’t looked at that particular code in awhile. The overall group
philosophy on these standards is that descriptive function and variable naming should be used
at all time except in cases of special exceptions. Doing this in conjunction with some variable
prefixing and use of camel case will eliminate much of the wasted time involved at going over
confusing code. When naming a variable underscores are to be avoided with no exception.

Prefix Convention
Our prefixing of variables will be a toned down subset of Hungarian notation. The use of
prefixes only applies to predefined C++ types. Any level of indirection with pointers is still just
a pointer so as such all pointers, double pointers or otherwise will just be denoted with a
single p. The only exception to this is character pointers, they will be always be denoted with
sz. Naming prefixes should be limited to at most two prefixes. Pointer denotation should come
before any other notation such as integer.

PREFIX DATA TYPE EXAMPLE

B BOOLEAN BOOL BSTART

F FLOATING POINT FLOAT FTIME

N INTEGER INT NCOUNT

C CHARACTER CHAR CTYPE

SZ CHARACTER STRING OR LPSTR STRING CHAR * SZNAME

P POINTER INT * PTRIOBJECT

G GLOBAL INT GCOUNTER

MY
MEMBER VARIABLE (USED IN CLASSES TO

DENOTE VARIABLES THAT BELONG TO
CLASSES)

INT MYNPOSX

 102

Structures
The first letter of structures will be capitalized. Stucts will not have a private or protected
scope. They should be four byte aligned, but there are exceptions (see Byte Alignment
section). There shouldn’t be any functions beyond a constructor within a struct. Unions are
acceptable in structs.

Example:

struct Position
{

union
{

 Fixed position[3];

 struct
{
 Fixed x, y, z;
};
};

//CONSTRUCTOR
Position(Fixed x, Fixed y, Fixed z);

//CONSTRUCTOR
Position(Fixed* pos);

};

 103

Classes
The only specific naming convention for classes is that they are to be named in camel case.
That being said, classes will be named in a loosely descriptive manor. For instance, if a class
manages all the memory allocation and deletion it should be named MemoryManager. Layout
should in most cases be private scope first then public scope. There is no specifications for
protected scope, it is up to the coders digression. Variables should also be laid out in a four
byte-alignment friendly manor unless otherwise required. The byte alignment of classes is
addressed later in the Data Alignment section.

Example:

class MemoryManager
{
private:
 long long mynByteAlign;
 int mynMemoryAlocated;
public:
 //CONSTRUCTOR
 explicit MemoryManager(int bytes);

 //DESTRUCTOR
 ~MemoryManager(void);

 //ACCESSORS
 inline int GetMemoryAllocated(void) { return mynMemoryAlocated; }
};

Relevant Function Names
Functions will always start with a capital letter so they are easily distinguishable from variables
at all times. There is to be no prefix to a function but they must be named using camel case.
The function names themselves should be descriptive as to what they do, but they should not
be any longer than three words. All accessors will start with “Get” and all modifiers will begin
with “Set”.

Example:

void CalculatePath(void);

int GetHealth(void);

void SetLives(int nLives);

 104

Macros and Constants
C-Style macros will be allowed in the code base, but they are to be used sparingly. For
instance in any situation that functionality needs to be type-safe and have no more
functionality than that of an inline function, a macro may not be used. The macro should be
typed in all caps as to be able to clearly distinguishable from functions and variables. The only
thing that should be macros are functions that either are better of always being “inlined” or
functions that have no one specific place of use within the code base. They should always be
defined in the Define.h file. Macros being defined in Define.h will cause a total rebuild, but this
should slow down further into the development cycle, as most macros should already be in the
build.

Example:
#define SAFE_RELEASE(X) if (X)
{

 X->Release();
X = NULL;

}

Unless a special exception arises constants will be defined through preprocess defines. These
defines should go in the Defines.h file. Due to long rebuild times, anything added to Defines.h
needs to be in a final and working form to avoid making later changes. Constants should be
named using all caps to denote their difference from regular variables and functions. If there is
an instance in which a constant must be defined with const and not define then it is the
obligation of that coder to get permission from the rest of the group.

Example:
#define WINDOW_WIDTH 800

 105

Summary of Naming Convention
Our naming conventions are a subset of Hungarian notation. The difference is
our convention is less strict than Hungarian. Our overall goal is to get away from
ever having more than two prefixes to a variable. We limit this by only requiring a
single p to denote all types of pointers except char pointers. In this manor the
most that one should use for prefixes is a prefix to denote scope and a prefix to
denote its ‘primary’ type. To this end, all names must be descriptive on their own
even without prefixes. By doing this we hope to still clue in people as to what a
variable is, but not to overload them with ‘random’ letters in front of every one of
them. On top of this we want our code to be as self-documenting and readable
as possible. Team Booty Rock hopes to accomplish this task by using intelligent
function naming and camel case with our variable prefixing.

 106

Commenting
All non accessors, modifiers, default destructors, and default constructors will have a function
header in only the header file. Accessors will all be lumped together under a //ACCESSORS
comment. Modifiers will all be lumped together under a //MODIFIERS comment. Default
constructors will de denoted by //CONSTRUCTOR and destructors denoted by
//DESTRUCTORS. Source code should be defined with clearly written, self documenting code,
but code that is confusing should be accompanied by a comment to explain what is happening.
Both headers and source files should be started with a file header, which is defined bellow.
BUG, TODO , and HACK will be used as keywords within code to make these ‘hotspots’ easily
searchable. BUG keywords are to be applied to low priority problems only, and added to the
bug report.

Example file header:
//
//
// File: AssetManager.h
// Date: 8/17/2008
// Creator: Phil Fox
// Description: Preloader for all the game assets to cache and retrieve for later
// use
//
//

Example function header:
//
//
// Function: Update
// Last Modified: 12/13/2007
// Description: Updates the games current state when run.
// In: Takes in a time slice.
// Out: Returns void.
//
//

Example TODO:
//
// TODO: Add in mouse based movement.
//

Example HACK:
//
// HACK: static bool added to make this work temporarily.
//

 107

Data Alignment
Structs will be four byte aligned. Alignment will be accomplished by ordering variables from
largest to smallest within the struct. If padding is required to four byte align, this decision will
be a judgment call from the programmer. Padding is only required if it is contained in a high
traffic struct. An example of a high traffic struct would be a struct that was used to tell the
renderer exactly what needs to be rendererd for a given object, or one that is referenced
many times each frame. This byte alignment does not have to be applied to classes, but it is
not frowned upon. Doubles are only to be used where required and only when everyone on
the team agrees. The reason we are not using shorts is the same issue we are having with
doubles, in that it introduces a needless messing up of the byte alignment.

Example:
struct ExampleStuct
{
 int nVar;
 int nExample;
 char counter;
 char info;
 char randomLetter;

char padding;
};

Coding Guidelines

• No doubles are to be used in the code base unless required.
• No long doubles are to be used in the code base unless required.
• No long longs are to be used in the code base unless required.
• No shorts are to be used in the code base unless required.
• No local variable requires a naming convention, but is not frowned upon if used.
• All coordinates (x, y, z) will use fixed point math.
• If a specific constructor is required the keyword explicit is to be used.
• Const correctness is to be used on referenced parameters.
• i, k, j may be used as counter within loops.
• x, y, z, w do not require any sort or prefixes or naming conventions.
• User defined types do not require any prefixes, but are still subject to camel case and logical

naming conventions.
• Types such as matrices and vectors require no prefix, but must contain what they are within

the name. For instance, D3DXMATRIX matWorldTrans or D3DXMATRIX worldTransMat;
• Every level of scope in code requires an indentation.
• Inclusion guards will be done using #pragma once at the top of all header files.
• No team member is allowed to ever use __forceinline keyword within the code base.

 108

 109

Development Environment

Compiler
 Visual Studios 2005 C++ Compiler
Graphics API
 DirectX August 2008 SDK
Shader Creator
 NVidia FX Composer 2.5
Source Control
 Alien Brain 7.5.2.4592
Sound API
 Fmod 3
Art Programs
 Maya 8.5
 CS3 Photoshop v10.0

Paint.net version v3.3.6.3158.38068
Scripting
 TinyXML 2.5.3

 110

Timing Specifications
Super Power Surge Spike is required to run at least 60 Frames a second during all game play
situations. During each frame or 1/60th of a second each of these pieces of technology will be
using approximately this much % of this Time resource.

TECHNOLOGY NEEDED FOR GAMEPLAY PERCENTAGE OF FRAME NEEDED
ENEMY AI 10%
SMOOTH SKIN AND BONE ANIMATION
UPDATE

12.5%

HUD UPDATE 2%
HUD RENDER 2%
OBJECT UPDATE 10%
OBJECT COLLISION DETECTION 15%
PARTICLES/EFFECTS UPDATE 5%
CULLING 7.5%
OBJECT GEOMETRY/EFFECT RENDERING 30%
INPUT 2%
SOUNDS 4%

 111

System Architecture

Description
To allow for multiple ‘arena’ levels we will only be loading the currently applicable level at the
level load screen and then releasing them after the end of the level. This will allow us to keep
our memory stamp lower and will give us a chance to load more textures into memory. We
also intend to avoid using the singleton design pattern because it can introduce unexpected
and hard to trace problems into a code base. To keep global systems without using a singleton
we will declare all globals in main.cpp and extern them to the defines.h file which is included in
the rest of the code base. One of our most important modules is the FXManager. The
FXManager itself is nothing more than a façade to abstract out each of the different effect
systems: sound, geometry, shaders, and particles. This manager will give us an interface to
play an effect wholly rather than having to interact with each effect module directly.

 112

 113

Context Model Description

• Timer

o Accessed By
 Global

• Functions
o Init()
o TimeStep()
o GetTimer()
o PauseTimer()
o PlayTimer()
o CreateTimer()
o DiscardTimer()
o SetTimer()
o Update()

• Input

o Accessed By
 State Machine

• Functions
o GetInstance()
o InitDevices()
o InitKeyboard()
o InitMouse()
o ShutdownDirectInput()
o ReadDevices()
o ReadKeyboard()
o ReadBufferedKeyboard()
o GetKey()
o CheckKeys()
o CheckBufferedKeys()
o GetBufferedKey()
o GetBufferedKeyEx()
o ReadMouse()
o ReadBufferedMouse()
o OnMouseButtonRelease()
o GetMouseButton()
o GetBufferedMouseButton()
o GetMouseAxis()

• Player System

o Accessed By
 Global

 114

• Functions
o Init()
o Shutdown()
o Update()
o AddScore()
o SetScore()
o GetScore()
o SetHealth()
o GetHealth()
o ModifyHealth()
o SetPrimaryEnergy()
o GetPrimaryEnergy()
o SetSecondaryEnergy()
o GetSecondaryEnergy()
o EventProc()

• Achievement System

o Access To
 Player Manager

• Functions
o AddScore()

o Accessed By
 Global

• Functions
o Init()
o Update()
o Shutdown()
o Update()
o GetEarnedAchievements()
o EventProc()

• Math Library

o Accessed By
 Global

• Functions
o AngleBetween()

• Event System

o Accessed By
 Global

• Functions
o GetInstance()
o Shutdown()
o RegisterClient()

 115

o SendEvent()
o ProcessEvents()
o UnregisterClient()
o ClearEvents()

• Asset Manager

o Accessed By
 Global

• Functions
o Init()
o Shutdown()
o LoadAsset()
o GetAsset()
o ReleaseAsset()
o ReleaseAll()
o EventProc()
o ReleaseAllAssetType()

• State Machine

o Access To
 FXManager

• Functions
o Init()
o Shutdown()

 AI System
• Functions

o Init()
o Shutdown()
o Update()

 Object Manager
• Functions

o AddStaticObject()
o AddDynamicObject()
o GetStaticObject()
o GetDynamicObject()
o RemoveStaticObject()
o RemoveDynamicObject()
o Update()

 Sound System
• Functions

o Init()
o ShutDown()

o Accessed By
 WinMain

 116

• Functions
o Init()
o Update()
o Shutdown()

 Game States
• Functions

o GetInput()
o ChangeState()

• Animation System
o Access To

 ObjectManager
• Functions

o SetBoneMatrixPointers()
 FXManager

• Functions
o GetKeyframes()
o GetCurrentKeyframe()

o Access By
 State Machine

• Functions
o AddTime()
o SetTime()
o Process()
o Init()
o Shutdown()

 Renderer
• Functions

o Draw()
o DrawFrame()

• Object Manager
o Access To

 Physics
• Functions

o Apply()
 Collision

• Functions
o Detect()
o React()

 Object Factory
• Functions

o Init()
o Shutdown()
o GetStaticObject()

 117

o GetDynamicObject()
o ReturnStaticObject()
o ReturnDynamicObject()

 Object Hierarchy
• Functions

o Update()
o Render()

o Accessed By
 State Machine

• Functions
o AddStaticObject()
o AddDynamicObject()
o GetStaticObject()
o GetDynamicObject()
o RemoveStaticObject()
o RemoveDynamicObject()
o Update()

• Object Factory

o Access To
 Object Hierarchy

• Just for new/delete and enum of types
o Accessed by

 Object Manager
• Functions

o Init()
o Shutdown()
o GetStaticObject()
o GetDynamicObject()
o ReturnStaticObject()
o ReturnDynamicObject()

• Physics
o Access to

 Object Hierarchy
• Object Types

o Accessed By
 Object Manager

• Functions
o Apply()

 Object Hierarchy
• Functions

o Apply()
 Collision

 118

• Functions
o Apply()

• Collision
o Access to

 Object Hierarchy
• Object Types

o Accessed By
 Object Manager

• Functions
o Detect()
o React()

• Shapes
o Accessed By

 FXManager
• Gets Object geometry

 Collision
• Gets Object geometry

• Object Hierarchy

o Access To
 Physics

• Functions
o Apply()

 Collision
• Functions

o Detect()
o React()

 AI System
• GetNextPoint()

 FXManager
o Accessed By

 Object Manager
• Functions

o Update()
o Render()

 Object Factory
• Just for new/delete and enum of types

• Renderer

o Access To
 Animation System

• Functions

 119

o Draw()
o DrawFrame()

 HUD
• Functions

o Render()
 Material System

• Functions
o Clear()
o LoadScript()
o Update()
o Blend()
o UpdateDynamicMaterials()
o IsDynamic()
o IsTransparent()
o GetMergeMode()
o PreRender()
o PostRender()

 Camera

• Gets the cameras view matrix
 Culling

• Functions
o GetVisibleSet()

o Accessed By

 State Machine
• Functions

o Init()
o MakeFullscreen()
o SetColorMask()
o ClearBackbuffer()
o ClearZBuffer()
o ClearBuffers()
o ClearBackbuffer()
o LoadFont()
o UnloadFont()
o WriteFont()
o SetPointSize()
o PushMaterial()
o PopMaterial()
o GetMaterialSize()
o Draw()
o Draw()
o Draw()

 120

o Precompile()
o Shutdown()
o BeginScene()
o EndScene()
o GetCamera()
o SetAnimationSystem()
o LoadShader()
o UnloadShader()
o UnloadAllShaders()

o Culling
o Accessed By

 Renderer
• Functions

o GetVisibleSet()
 State Machine

• Functions
o Set()
o Update()

• HUD

o Access To
 Object Manager

• Functions
o GetDynamicObject()

o Accessed By
 Renderer

• Functions
o Render()

 State Machine
• Functions

o Init()
o Update()
o Shutdown()

• Material System
o Accessed By

 Renderer
• Functions

o Clear()
o LoadScript()
o Update()
o Blend()
o UpdateDynamicMaterials()
o IsDynamic()

 121

o IsTransparent()
o GetMergeMode()
o PreRender()
o PostRender()

• Camera
o Accessed By

 Renderer
• Gets the cameras view matrix

 StateMachine
• Gets the cameras view matrix
• Functions

o UpdateBasedOnAvatar()
o SwoopInOnAvatar()

 Collision
• Gets the cameras model matrix

• AI System

o Access To
 Asset Manger

• Functions
o LoadAsset()
o GetAsset()

 Object Hierarchy
• Gets static objects

 Flocking/Fleeing
• Functions

o Init()
o Update()
o Shutdown()
o GetCurrentLocation()

 Pathfinding
• Functions

o Init()
o Shutdown()
o GetPath()
o LevelLoad()

 HiveMind
• Functions

o Init()
o Shutdown()
o GetPath()
o Update()

o Accessed By
 Object Hierarchy

 122

• Functions
o GetNextPoint()

 State Machine
• Functions

o Init()
o Shutdown()
o Update()

• Pathfinding
o Accessed By

 AI System
• Functions

o Init()
o ShutDown()
o LevelLoad()

 Hive Mind
• Functions

o GetPath()

• Flocking/Fleeing
o Access To

 Hive Mind
• Functions

o GetEnemy()
o GetEnemyCount()
o GetGroup()
o GetGroupCount()

o Accessed By
 AI System

• Functions
o Init()
o ShutDown()
o GetCurrentLocation()
o Update()

• Hive Mind
o Access To

 Pathfinding
• Functions

o GetEnemy()
o GetEnemyCount()
o GetGroup()
o GetGroupCount()

o Accessed By

 123

 AI system
• Functions

o Init()
o Shutdown()
o GetEnemy()

• FXManager

o Access To
 Geometry Effects Manager

• Functions
o Init()
o Shutdown()
o CreateEffet()
o GeomSystem()

 Sound Manager
• Functions

o PlaySound()
o StopSound()
o ResetSound()
o Distort()
o Play3DSound()
o LoadSound()
o UnloadSound()

 Particle Manager
• Functions

o Init()
o Shutdown()
o CreateEmitter()

 Object Manager
• Functions

o AddStaticObject()
o AddDynamicObject()

o Accessed By
 State Machine

• Functions
o Init()
o Shutdown()
o StartEffect()
o GetParticleSys()
o GetGeomSys()
o GetAudioSys()

 Animation System
• Functions

o StartEffect()

 124

• Geometry Effects Manager

o Access To
 Object Manager

• Functions
o AddStaticObject()
o AddDynamicObject()

o Accessed By
 FXManager

• Functions
o Init()
o Shutdown()
o CreateEffet()
o GeomSystem()

• Sound System
o Accessed By

 StateMachine
• Functions

o Init()
o ShutDown()

 FXManager
• Functions

o PlaySound()
o StopSound()
o ResetSound()
o Distort()
o Play3DSound()
o LoadSound()
o UnloadSound()

• Particle Manager

o Access To
 ObjectManager

• Functions
o AddStaticObject()
o AddDynamicObject()

o Accessed By
 FXManager

• Functions
o Init()
o Shutdown()
o CreateEmitter()

 125

Module Feature Breakdown

Timer
 This module is responsible for centralizing the game timing mechanisms used
throughout the program. This includes the master time step and manages individual
countdown timers. The system is global, and is accessed through its singleton interface. This
system was made by James Leonis and edited slightly by Joshua Bennett. Due to strange
errors needs to use doubles.

Dependencies

• Accessed by:
o Global access

Functions
RETURN NAME PARAMETERS DESCRIPTION

VOID INIT VOID STARTS THE SYSTEM.
VOID SHUTDOWN VOID SHUTS DOWN AND FREE’S MEMORY.

DOUBLE TIMESTEP

VOID RETURNS THE AMOUNT OF TIME SINCE THE LAST
FRAME IN SECONDS.

DOUBLE GETTIMER INT NID RETURNS THE CURRENT TIME LEFT ON HTIMER IN
SECONDS

BOOL PAUSETIMER INT NID PAUSES HTIMER
BOOL PLAYTIMER INT NID RESUMES HTIMER
INT CREATETIMER INT NTIME CREATES A COUNTDOWN TIMER AND RETURNS A

REFERENCE HANDLE WITH NTIME AMOUNT OF
SECONDS

BOOL DISCARDTIMER INT NID REMOVES HTIMER FROM THE LIST OF TIMERS
BOOL SETTIMER INT NID

INT NTIME
SETS HTIMER TO NTIME SECONDS

BOOL UPDATE VOID UPDATES THE GLOBAL TIME STEP AND THE
INDIVIDUAL TIMERS.

Features

• Is a centralized source for the game’s master time step
• Can create arbitrary countdown timers for use with game specific content

Countdown Timer structure
 The countdown timers will be stored in a vector array inside the game timer.
Individual timers will be accessible through handles. The game timer’s Update function also
updates these individual timers

 126

struct tTimer
{
 Double dTimeLeft; // in seconds
 Float dStartTime; // if < INACTIVE_TIMER then the timer is inactive
};

Time to Complete Estimate

• Already done for our project.

Module Author
James Leonis

 127

Input
 This module is responsible for handling the initialization and shutdown of Direct Input.
It will also handle the storing of mouse and keyboard devices and the polling of these devices
as well.

Dependencies

• Accessed by:
o StateMachine

Return Name Parameters Description
Input* GetInstance None

Returns an

instance to the
DirectX Input

wrapper.

Bool InitDevices HWND hWnd,
HINSTANCE

hMainInstance,
Bool bExclusive

Initializes all of
the devices for
Direct Input

Bool InitKeyboard HWND hWnd,
HINSTANCE

hMainInstance,
Bool bExclusive

Initialize the
keyboard for

use with Direct
Input

Bool InitMouse HWND hWnd,
HINSTANCE

hMainInstance,
Bool bExclusive

Initialize the
mouse for use

with Direct
Input

Void ShutdownDirectInput None Shuts down all
Direct Input
components

Bool ReadDevices None Gets the state
of all the
acquired
devices.

 128

Bool ReadKeyboard None Gets the
keyboard state
every frame

Bool ReadBufferedKeyboard None Gets the
buffered

keyboard data
every frame

Bool GetKey UCHAR ucKey Gets the current

immediate state
of a key

Char CheckKeys None Checks to see
what exact

button the user
pressed.

Char CheckBufferedKeys None Checks to see
what exact

button the user
pressed, but
with buffered

input
Bool GetBufferedKey UCHAR ucKey Gets the status

of a key using
buffered input

Bool GetBufferedKeyEx UCHAR ucKey Gets a buffered
key without
using Direct

Input’s buffered
input

Bool ReadMouse None Gets the mouse
state every

frame

 129

Bool ReadBufferedMouse None Get the
buffered mouse

data every
frame

Bool OnMouseButtonRelease BYTE mButton Check and see
if the mouse

button specified
was released

Bool GetMouseButton BYTE mButton Gets the current
immediate state

of a mouse
button

Bool GetBufferedMouseButton BYTE mButton Gets the status
of a mouse
button using

buffered input.

LONG GetMouseAxis LONG lAxis Gets the status
of a mouse axis

Features

• Wrapper class that contains needed functionality for Direct Input

Time to Complete Estimate

• Implementation
o 1 day

Module Authors
Dave Brown / Jensen Rivera - Original Authors
Philip Fox – Modified

 130

Player System
 The Player Manger is a data holding class with information of the players score, health,
energy levels and if shield is active or not. Most of the Player Managers job is to handle the
score and raise it depending on kills, also handles the combo system.

Dependencies

• Accessed by:
o Global

RETURN NAME PARAMETERS DESCRIPTION

VOID INIT VOID STARTS THE
SYSTEM.

VOID SHUTDOWN VOID SHUTS DOWN AND
FREE’S MEMORY.

VOID UPDATE VOID UPDATES ALL
TIMERS AND

DETERMINES THE
SCORE.

VOID ADDSCORE INT NSCORE – THE EXTRA
SCORE TO ADD TO THE

TOTAL.

ADDS TO THE
TOTAL SCORE.

VOID MODIFYHEALTH INT NHEALTH – ALTERS THE
CURRENT HEALTH OF THE

PLAYER.

VOID HANDLEEVENT CEVENT *PEVENT – HOLDS A
CLASS CONTAINING MESSAGE

TYPE AND MESSAGE
PARAMETER

PROCESSES AN
EVENT MESSAGE.

(PLAYER_HIT,
PLAYER_DEATH,
ENEMY_DEATH)

BOOL FIREPRIMARYATTACK ATTACK*& RETURN, INT&
TYPE

IF THE ATTACK
FIRES OFF

SUCCESSFULLY
THEN IT RETURNS
THE ATTACK AND
THE TYPE OF THE

ATTACK
BOOL FIRESECONDARYATTACK ATTACK*& RETURN INT&

TYPE
IF THE ATTACK

FIRES OFF
SUCCESSFULLY

THEN IT RETURNS
THE ATTACK AND
THE TYPE OF THE

ATTACK

 131

BOOL DRAINPRIMARY POWERNODE* ATTEMPTS TO
DRAIN A

POWERNODES
ENERGY INTOT HE
PRIMARY AMMO

SLOT
BOOL DRAIN SECONDARY POWERNODE* ATTEMPTS TO

DRAIN A
POWERNODES

ENERGY INTO THE
SECONDARY AMMO

SLOT
BOOL SWAPABILITIES VOID SWAPS THE AMMO,

AND TYPE OF
AMMO BETWEEN
PRIMARY AND
SECONDARY

Features

• Storage of player information
• Manages player score

Time to Complete Estimate

• Basic Player System
o 2 days

• Detailed Player System
o 2 days

• Scoring
o 4 days

Total: 8 days

Module Authors
Phil Fox – System Head
Joshua Bennett

 132

Achievements
 Achievements are handled in events or by drawing information from the Player
Manager. The Achievements section of the menu keeps track of what achievements have been
earned.

List of achievements (subject to change) - Enum type follows achievement description:

11. Tier three: Get a multiplier of 8 (MULTIPLIER_EIGHT)
12. Tier three: Get a multiplier of 15 (MULTIPLIER_FIFTEEN)
13. Should Have Gone Linux: Beat the game (BEAT_GAME)
14. Power User: Win under ten minutes (BEAT_FAST)
15. One Track Mind: Use only two elements to beat a level (TWO_ELEMENTS)
16. OverKill: Only use secondary attacks in a level (SECONDARY_ATTACKS)
17. Skill Shot: Never hit a enemy with a element they are strong too (NO_STRONG)
18. Evasive: Beat a level while not taking a single hit (NO_HIT)
19. Bit: Kill ten enemies (KILL_TEN)
20. Byte: Kill 100 enemies (KILL_ONE_HUNDRED)

Dependencies

• Access to:
o Player Manger

• Accessed by:
o Global

 133

RETURN NAME PARAMETERS DESCRIPTION

VOID INIT VOID STARTS THE
SYSTEM.

VOID SHUTDOWN VOID SHUTS DOWN AND
FREE’S MEMORY.

VOID UPDATE VOID CHECKS ALL EVENTS
THAT HAVE

HAPPENED AND
UPDATES COUNTERS

AS NEEDED.
BOOL* - AN
ARRAY OF
BOOLEAN
VALUES

GETEARNEDACHIEVEMENTS VOID RETURNS AN ARRAY
OF BOOL’S, EACH
ACHIEVEMENT IS

REPRESENTED BY A
BOOL AND ITS
LOCATION IS

FOUND THOUGH AN
ENUM.

VOID SETACHIEVEMENT INT NTOUNLOCK – A
ENUM OF THE

ACHIEVEMENT TO
UNLOCK.

BOOL BTOSET – IF
THE ACHIEVEMENT IS

ON OR NOT.

PASSING IN A ENUM
WILL TRIP THE

GIVEN
ACHIEVEMENT TO

EQUAL THE PASSED
IN BOOL.

VOID HANDLEEVENT CEVENT *PEVENT –
HOLDS A CLASS
CONTAINING

MESSAGE TYPE AND
MESSAGE

PARAMETER

PROCESSES AN
EVENT MESSAGE.

(PLAYER_HIT,
PLAYER_DEATH,

ENEMY_HIT,
ENEMY_DEATH,

BOSS_HIT,
BOSS_DEATH,
PLAYER_MOVE,
PLAYER_JUMP)

Features

• Lists achievements and stores them.

Time to Complete Estimate

• 2 days

Module Author

 134

Joshua Bennett

 135

EventDispatcher
 This module controls the communication between all objects and modules in our game.
Objects or modules will register with this dispatcher and when an event happens for a specific
object or module then the dispatcher will send that event out. GetInstance must be called to
get access to the module and Shutdown must be called to clean up any memory allocated.

Dependencies

• Accessed by:
o Global

Return Name Parameters Description

Dispatcher * GetInstance None

Returns an instance to the
dispatcher to access the

interface.

void Shutdown None Shuts down the Dispatcher

void RegisterClient EVENTID eventID
IListener *pClient

Registers a client to receive
events from the dispatcher.

void SendEvent EVENTID eventID
void *pParam

Sends an event to a client
registered with the eventID, will

also include the void * data
passed in as well.

void ProcessEvents None Processes all the events in the
queue.

void UnregisterClient IListener *pClient Unregisters a client from
receiving events from the

dispatcher. (Refer to IListener
sub-module).

void ClearEvents None Clears the event vector out,
useful when you’re exiting game

state.

 136

Events
STATE_SWITCH
ATTACK
PLAYER_DEATH
ENEMY_DEATH
GAME_SHUTDOWN
PLAYER_HIT
ENEMY_HIT
PLAYER_JUMP
PLAYER_MOVE
BOSS_HIT
BOSS_DEATH
ACHIEVEMENT_UNLOCK

Features

• Allows the communication between classes without having them directly talk to each
other.

• Great debug feature as it allows one location where events for the whole game can be
viewed.

Time to Complete Estimate

• Implementation
o 1 day

• Testing and Integration
o 1 day

Total: 2 days

Module Authors
Jensen Rivera - Original Author
Philip Fox – Modified

 137

Sub Module
IListener
Interface class that is used with the event system.

RETURN NAME PARAMETERS DESCRIPTION
VOID HANDLEEVENT CEVENT *PEVENT –

HOLDS A CLASS
CONTAINING

MESSAGE TYPE
AND MESSAGE
PARAMETER

FUNCTION THAT
WILL HANDLE ANY
EVENTS SENT TO A

CLASS THAT
DERIVES FROM

THIS INTERFACE

Time to Complete Estimate

• Event System
o 2 days

Module Author
Philip Fox

 138

Sub Module
CEvent
This class contains all of the functionality for any event sent through the Event system

RETURN NAME PARAMETERS DESCRIPTION
VOID SETEVENTPARAMS STRING EVENTID

VOID * PPARAM

SET PARAMETERS
TO SEND THROUGH

THE EVENT
SYSTEM.

VOID SETEVENTID STRING EVENTID MUTATOR TO
ASSIGN AN EVENT

ID

VOID SETPARAM VOID * PPARAM MUTATOR TO SET A
PARAMETER FOR

THIS EVENT

STRING GETEVENTID NOTHING ACCESSOR TO
RETRIEVE THE

EVENT ID OF THIS
EVENT.

VOID * GETPARAM NOTHING ACCESSOR TO
RETRIEVE THE

PARAMETER SET
FOR THIS EVENT.

Time to Complete Estimate

• Event System
o 2 days

Module Author
Philip Fox

 139

AssetManager
The Asset Manger handles loading and storing of all file input/output. The Asset Manger will
handing loading the following: models, textures, levels, AI waypoints, node placement/type,
and all scripting data. Scripts are in XML format and read in using tinyXML.

Scripting is done for the following:

• Enemy values (HP, speed, etc)
• Player Avatar values (HP, speed, etc)
• Node values (recharge rate, total energy stored, etc)
• High score loading and saving
• Material system (Not using XML)
• Menu scripting
• Enemy spawning (everything but the location)

Dependencies

• Accessed by
o Global

RETURN NAME PARAMETERS DESCRIPTION

VOID INIT VOID STARTS THE
SYSTEM.

VOID SHUTDOWN VOID SHUTS DOWN
AND FREE’S
MEMORY.

INT –
RETURNS AN

ID HANDLE TO
THE ASSET.

LOADASSET INT NTYPE – A ENUM
THAT HOLDS THE TYPE OF

FILE.
CONST CHAR *

PFILENAME – THE NAME
OF THE FILE STORED IN

ASSETS.
DWORD OPTIONS – A

DEFAULTED VALUE, FOR
USE WITH MESHES ONLY.

LOADS AN ASSET
FROM THE HARD

DRIVE AND
STORES FOR
LATER USE.

VOID * -
RETURNS THE

OBJECT
REQUESTED

FROM THE ID
PASSED IN.

GETASSET INT NID – THE ID VALUE
OF AN ASSET THAT WAS
GIVEN OUT FROM THE
LOADASSET FUNCTION.
INT NTYPE – A ENUM

THAT HOLDS THE TYPE OF
FILE.

TAKES IN A ASSET
ID AND RETURNS
A POINTER TO IT

IN THE FORM OF A
VOID POINTER.

VOID RELEASEASSET INT NID – THE ID VALUE
OF AN ASSET THAT WAS

REMOVES THE
ASSET FROM

 140

GIVEN OUT FROM THE
LOADASSET FUNCTION.
INT NTYPE – A ENUM

THAT HOLDS THE TYPE OF
FILE.

MEMORY.

VOID RELEASEALL VOID REMOVES ALL
ASSETS FROM

MEMORY.
VOID RELEASEALLASSETTYPE INT NTYPE – A ENUM

THAT HOLDS THE TYPE OF
FILE.

RELEASES ALL OF
A GIVEN ASSET

TYPE FROM
MEMORY.

VOID EVENTPROC INT NEVENTTYPE – THE
TYPE OF MESSAGE.

 VOID * PPARAMS – ANY
EXTRA CONTENT IN THE

MESSAGE.

PROCESSES AN
EVENT MESSAGE.

Enum File Types
STATICX_FILE
ANIMATEX_FILE
PNG_FILE
OGG_FILE
XML_SCRIPT_SPAWN
XML_SCRIPT_ENEMYS
XML_SCRIPT_PLAYER
XML_SCRIPT_NODES
XML_SCRIPT_HIGHSCORE
XML_SCRIPT_MENU
MAT_SCRIPT

Features

• Storage of all assets
• Templates for objects
• Simple and clean interface

Enemy Script Example
<Enemies>
 <Fire_Enemy>
 <HP>50</HP>
 <Speed>5</Speed>
 <Weakness>Ice</Weakness>

 141

 </Fire_Enemy>
 <Ice_Enemy>
 …………….
</Enemies>

Player Script Example
<Player>
 <Speed>5</Speed>
 <Jump_Hight>3</Jump_Hight>
 <Easy>
 <HP>10</HP>
 </Easy>
 <Medium>
 <HP>5</HP>
 </Medium>
 <Hard>
 <HP>1</HP>
 </Hard>
</Player>

Node Values
<Nodes>
 <Recharge_Time>10</Recharge_Time>
 <Node_Charge>100</Node_Charge>
 <Node_Charge_Distance>25</Node_Charge_Distance>
</Nodes>
High Score Script Example
<High_Scores>
 <Main_Scores>
 <First>10000</First>
 <Second>5000</Second>
 ……
 <Tenth>1</Tenth>
 </Main_Scores>
 <Survival_Scores>
 <First>10000</First>
 <Second>5000</Second>
 ……
 <Tenth>1</Tenth>
 </Survival_Scores>
 <Evasion_Time>
 <First>460</First> //Stored in seconds
 <Second>50</Second>
 ……

 142

 <Tenth>2</Tenth>
 </Evasion_Time>
 <Time_Attack>
 <First>400</First> //Stored in seconds
 <Second>500</Second>
 ……
 <Tenth>999999999</Tenth>
 </Time_Attack>
</High_Scores>

Material System Script Example
//This is how to comment
Pass
{
 ambient = (0.5, 0.4, 0.7, 1.0)
 diffuse = (0.8, 0.2, 0.3, 1.0)
 specular = (0.9, 0.7, 0.4, 1.0)
 shininess = 30.0
 Texture
 {
 “asset/2d/diffuse.png”
 }

}

 143

Enemy Spawn Scripting
<Level_One>
 <Wave_One>
 <Wave_Timer>50</Wave_Timer>
 <Squad_One>
 <Type>Fire</Type>
 <Number>5</Number>
 </Squad_One>
 <Squad_Two>
 <Type>Ice</Type>
 <Number>5</Number>
 </Squad_Two> >5</Number>
 </Wave_One>
 <Wave_Two>
 <Wave_Timer>60</Wave_Timer>
 <Squad_One>
 …….
 </Wave_two>
 ………
</Level_One>
<Level_Two>
……
<Level_Three>
…
<Boss>
 <State_One>
 <Squad_One>
 <Type>Fire</Type>
 <Number>5</Number>
 </Squad_One>
 <Squad_Two>
 <Type>Ice</Type>
 <Number>5</Number>
 </Squad_Two> >5</Number>
 </State_One>
 <State_Two>
 <Squad_One>
 …….
 </Squad_Four>
 </State_Two>
……….
</Boss>

 144

Time to Complete Estimate
• Asset Manager

o 2 days
• Model Loader

o 1 day
• Level Loading

o 2 days
• Scripting

o Enemy Spawning
 3 days

o Texture Loading
 1 day

o Materials
 5 days

• Animation Loading
o 1 day

Total: 14 days

Module Authors
Joshua Bennett – System Head
Justin Morgan

 145

 StateMachine
This module is responsible for switching between the many different states our game will go
through. Internally the State Machine will hold objects for the different states. The main states
of our game are the splash screen state, menu state, loading state, main game state, death
state, and game win state.

Dependencies

• Accessed by:
o Main game engine

Return Name Parameters Description

void Init None

This function will initialize the
state machine as well as any

states that need to be initialized,
example: Splash screen state

void Update Float fDelta This function will update the
current game state with the

passed in time slice.

void Input None Processes input for the current
game state.

void Render None Renders the current game state.

void Shutdown None Shuts down the state machine all
states associated with the game.

void ChangeState CGameStateInterface * pVal Changes the state of the game
state machine, this function will

call the current states exit
function, switches the state, and
then calls the new states enter

function.

Features

• Gives an organized approach to managing the multiple states our game will go
through.

• Eliminates spaghetti code by giving one location to make changes to each separate
state.

 146

• Time to Complete Estimate
• Game State

o 2 days
• Menu State

o 1 day
• End State

o 1 day
Total: 4 days

Module Author
Philip Fox

 147

Sub Module
CGameStateInterface
This module is an interface for the different states in our game.

Dependencies

• Accessed by:
o StateMachine

RETURN NAME PARAMETERS DESCRIPTION

VOID INIT NONE

THIS FUNCTION
WILL INITIALIZE

THE STATE
MACHINE AS WELL

AS ANY STATES
THAT NEED TO BE

INITIALIZED,
EXAMPLE: SPLASH

SCREEN STATE
VOID UPDATE FLOAT FDELTA THIS FUNCTION

WILL UPDATE THE
CURRENT GAME

STATE WITH THE
PASSED IN TIME

SLICE.
VOID INPUT NONE PROCESSES INPUT

FOR THE CURRENT
GAME STATE.

VOID RENDER NONE RENDERS THE
CURRENT GAME

STATE.
VOID SHUTDOWN NONE SHUTS DOWN THE

STATE MACHINE
ALL STATES

ASSOCIATED WITH
THE GAME.

Time to Complete Estimate

• Game State
o 2 days

Module Author
Philip Fox

 148

AnimationSystem
This system manages all animations in the game. It requires you to init the
DirectX animation controller with the Init function. To properly close the animation
system you must call Shutdown. On top that this system is dependant on DirectX
being already initialized, so the renderer must be running before this can be
initialized.

Dependancies

• Access To:
o ObjectManager
o FXManager

• Accesed By:
o Renderer
o StateMachine

RETURN NAME PARAMETER
S

DESCRIPTIO
N

VOID SETBONEMATRIXPOIN
TERS

LPD3DXFRA
ME PFRAME

THIS
FUNCTION
SETS UP
THE
POINTERS
FOR A
GIVEN BONE
TO ITS
MATRIX

VOID SETANIMATION INT
NANIMATION
SET

THIS
FUNCTION
TAKES IN AN
ID TO
CHANGE
WHICH
ANIMATION
IS ACTIVE.

INT GETANIMATION VOID THIS
FUNCTION
RETURNS
AN ID TO
THE
CURRENTLY
ACTIVE

 149

ANIMATION.
VOID INIT VOID THIS

FUNCTION
INITIALIZES
THE
ANIMATION
SYSTEM.

VOID SHUTDOWN VOID THIS
FUNCTION
SHUTS
DOWN THE
ANIMATION
SYSTEM.

VECTOR<KEYFRA
ME*>

GETKEYFRAMES INT
NANIMATION
SET

RETURNS
THE
ANIMATIONS
KEYFRAMES
.

VOID ADDTIME FLOAT FTIME
INT
NANIMATION
SET

THIS
FUNCTION
ADDS TIME
TO A
SPECIFIED
ANIMATION

VOID SETTIME FLOAT FTIME
INT
NANIMATION
SET

THE
FUNCTION
SETS THE
TIME ON A
SPECIFIED
ANIMATION.

VOID PROCESS NANIMATION
SET

INTERPOLA
TES
BETWEEN
KEYFRAMES
IN THE
SPECIFIED
ANIMATION

CONST
KEYFRAME*

GETCURRENTKEYFRA
ME

NANIMATION
SET

RETURNS
THE
CURRENT
KEYFRAME
FOR THE
SPECIFIED
ANIMATION.

VOID DRAW LPD3DXFRA
ME PFRAME

DRAWS THE
CURRENT

 150

INT
NANIMATION
SET

SPECIFIED
FRAME.

Features

• This system handles all the separate animations and unifies them to one
interface.

• This system handles effect triggers on proper frames to handle timing
issues.

 151

Associated Risks
Risk: Affected Resource: P C RF

Justin Morgan, Tech Lead .8 .2 0.84

Response or avoidance:

The animation system,
FXManager, and player might
have difficulty timing correctly.
Due to the fact that a callback
or event will have to trigger all
three, and even if only one of
them is a little bit off it will hurt
the immersion of the game.

Consult internet forums, articles, and
books before any coding happens.

Seek help from other classmates
working on animation.

Seek help from GP staff or Shawn
Kendell on animation techniques.

If timing takes cant be fixed by a week
after beta we will give up on the trying to fix it
and deal with the timing being slightly off.
This will be enacted a week after beta.

Time to complete estimate

• Animation Shader
o 3 days

• Interpolation
o 2 days

• Animation Manager
o 3 days

• Keyframe Management
o 1 day

• Animation Blending
o 5 days

Total: 14 days

Module Author
Justin Morgan

 152

ObjectManager
 The Object Manager is responsible for Updating and Processing the Objects and their
interactions in the Super Power Surge Spike world. This Module will be using functionality
defined in the Collision Detection, Game Physics and Object Hierarchy Modules.

Dependencies

• Access to:
o Physics
o Collision
o Object Factory
o Object Hierarchy

• Accessed by:
o State Machine
o ObjectManager
o FXManager

RETURN NAME PARAMETERS DESCRIPTION
VOID ADDSTATICOBJECT BASEOBJECT* ADDS THE STATIC

OBJECT TO THE
MODULE

VOID ADDDYNAMICOBJECT BASEOBEJCT* ADDS THE
DYNAMIC OBJECT
TO THE MODULE

BASEOBJECT* GETSTATICOBJECT INT NID – THE ID
ASSOCIATED WITH
THE POSITION IN
THE ACTIVE
OBJECTS VECTOR.

RETURNS THE
STATIC OBJECTS
MEMORY BASED
ON ITS ID IN THE
MODULE.

BASEOBJECT* GETDYNAMICOBJECT INT NID – THE ID
ASSOCIATED WITH
THE POSITION IN
THE ACTIVE
OBJECTS VECTOR.

RETURNS THE
DYNAMIC OBJECTS
MEMORY BASED
ON ITS ID IN THE
MODULE

VOID REMOVESTATICOBJECT INT NID – ID
ASSOCIATED WITH
THE OBJECT IN
THE MODULE

REMOVES THE
STATIC OBJECT
BASED ON ITS ID
NUMBER PASSED
IN

VOID REMOVEDYNAMICOBJECT INT NID – ID
ASSOCIATED WITH

REMOVES THE
DYNAMIC OBJECT

 153

THE OBJECT IN
THE MODULE

BASED ON ITS ID
NUMBER PASSED
IN

VOID CULLING VOID DECIDES WHAT
1OBJECTS GET
RENDERED TO
SCREEN

VOID ADDLEVEL INT ID LOADS A LEVEL
BASED ON THE ID
PASSED IN

VOID CAMCOLLISION VOID DETECTS AND
RESPONDS THE
CAMERA IN THE
WORLD TO MAKE
SURE IT DOESN’T
GET BLOCK BY
ANYTHING IN THE
WORLD

VOID UPDATE VOID UPDATES ALL
NECESSARY
OBJECTS

VOID COLLISIONANDRESPONSE VOID CALLS ALL THE
COLLISION
FUNCTIONS AND
MAKES SURE THE
PROPER RESPONSE
HAPPENS

VOID HANDLEEVENT CEVENT *PEVENT –
HOLDS A CLASS
CONTAINING
MESSAGE TYPE
AND MESSAGE
PARAMETER

RESPONDS TO
ADDING OR
REMOVING
OBJECTS FROM
THE SYSTEM.
(PLAYER_DEATH,
ENEMY_DEATH,
BOSS_DEATH)

Features

• Managing the objects, They will respond and interact towards our games goal

Time to Complete Estimate

• 1 day

Module Author

 154

• Tim Turcich

 155

Sub Module
Object Hierarchy
 The Object hierarchy is a collection of all the different types of objects in Super Power
Surge Spikes gameplay. These objects are managed by the object manager and have
functionality within their updates and render functions specific to how themselves.

The Structure is as Follows:

• BaseObject – has vector of emitters, collision shape, world matrix, object type id, and

Object3D.
o StaticObject

 LevelGeonmetry
 PowerNodes
 Platforms
 FlatObject

o DynamicObject
 Avatar – Player driven avatar - Alice
 Enemy – Base class for the four different types of enemies

• FireEnemy
• IceEnemy
• ElectricEnemy
• WindEnemy

 Attack – base attack for all the attack in the game
• FireBehavior – defines fire behavior/collisions

o FirePrimary
o IceandFire
o ElectricandFire
o WindandFire

• IceBehavior – defines Ice behavior/collisions
o IcePrimary
o FireandIce
o ElectricandIce
o WindandIce

• ElectricBehavior – defines electric behavior/collisions
o ElectricPrimary
o FirewithElectric
o IcewithElectric
o WindwithElectric

• WindBehavior – defines wind behavior/collisions
o WindPrimary
o WindwithFire
o WindwithIce
o WindwithElectric

 156

Dependencies

• Access to:
o Physics
o Collision
o AI System
o FXManager

• Accessed by:
o ObjectManager
o ObjectFactory

RETURN NAME PARAMETERS DESCRIPTION

VOID UPDATE VOID UPDATES THE
OBJECT

VOID RENDER VOID RENDERS THE
OBJECT

Features

• All game specific objects

Time to Complete Estimate

• 2 days

Module Author

• Tim Turcich

 157

Sub Module
Physics
 The Physics Module is designed to apply world/ environmental physical qualities to
most or all the dynamic objects in the environment. Eg) gravity

Dependencies
• Access to:

o Object Hierarchy
• Accessed by:

o Object Hierarchy
o Object Manager
o Collision Detection

RETURN NAME PARAMETERS DESCRIPTION
VOID APPLY BASEOBJECT* OB –

OBJECT TO APPLY
PHYSICS TOO

APPLIES SOME
PHYSICAL MATHT O
THE OBJECTS
MATRIX.

Features

• Global physics/movement applied to objects

Time to Complete Estimate

• 1 day

Module Author

• Tim Turcich

 158

Sub Module

Collision
 The Collision Module defines the basic primitive to primitive tests using the shapes
defined in the shapes module. It then uses these tests to do higher level tests that define
gameplay type collisions such as the different types of Attacks vs Enemies.

Dependencies

• Access to:
o Object Hierarchy

• Accessed by:
o Object Manager

RETURN NAME PARAMETERS DESCRIPTION

VOID DETECT VOID DETECTS AND
STORES
RELEVANT
COLLISION
INFORMATION.

VOID REACT VOID PROCESSES THE
COLLISION SO A
PROPER
GAMEPLAY
COLLISION
REACTION WILL
OCCUR.

COLLISIONSHAPE* CREATECOLLISIONVOLUMES CHAR* NAME,
MAT4
TRANSFORM

LOADS A MESH
AND
TRANSFORMS IT
AND BUILDS THE
CORRECT
COLLISION
VOLUME THERE
ARE MANY
HYBRIDS OF
THESE
FUNCTIONS.

VOID HANDLEEVENT CEVENT *PEVENT
– HOLDS A CLASS
CONTAINING
MESSAGE TYPE
AND MESSAGE
PARAMETER

RESPONDS TO
ADDING OR
REMOVING
OBJECTS FROM
THE SYSTEM
(ENEMY_HIT,
PLAYER_HIT,

 159

BOSS_HIT)

Features

• Detects interactions between the different types of primitives

Associated Risks
Risk: Affected Resource: P C RF

Tim Turcich 0.05 0.8 .64

Response or avoidance:

Collisions detections aren’t working
and cause the gameplay to break.
Such as falling through or going
through geometry. 1. Seek help from colleagues

2. Research possibly better collision algorythms
3. The gameplay will have to be reworked to fit the
scale that the object manager is capable of.
4. This will be done a week before alpha

Time to Complete Estimate

• 2 weeks

Module Author

• Tim Turcich

Sub Module
Shapes
 The Shapes module defines all the different collision primitives that represent the
objects in Super Power Surge Spike.

Dependencies

• Accessed by:
o FXManager
o Collision

Types and Structures defined in shapes.h are Sphere, Plane, AABB, Box, Cylinder, Line Swept
Sphere.

Function Table: None

Features

• Definitions for primitives used with collision detection and Effects

 160

Time to Complete Estimate
• 1 day

Module Author

• Tim Turcich

 161

Sub Module
ObjectFactory
 To prevent fragmenting of memory from calling new and delete on so many objects all
everything when not on use will be stored in a dynamic array within the Object Factory so they
can be reused without another new call. The dynamic arrays will start at a preset #define size
(stored within object factory .cpp) and will be able to resize automatically if needed.

Dependencies

• Access to:
o ObjectHierarchy

• Accessed by:
o ObjectManager

RETURN NAME PARAMETERS DESCRIPTION
VOID INIT VOID STARTS THE

SYSTEM.
VOID SHUTDOWN VOID SHUTS DOWN

AND FREE’S
MEMORY.

VOID * -THE
REQUESTED
OBJECT IN A
BLANK FORM.

GETSTATICOBJECT INT NTYPE – AN ENUM
OF THE OBJECT TYPE

THAT IS BEING
REQUESTED.

FROM WITHIN
STORED MEMORY

RETURNS AN
OBJECT WITHOUT
CALLING NEW OR

DELETE
VOID * -THE
REQUESTED
OBJECT IN A
BLANK FORM.

GETDYNAMICOBJECT INT NTYPE – AN ENUM
OF THE OBJECT TYPE

THAT IS BEING
REQUESTED.

FROM WITHIN
STORED MEMORY

RETURNS AN
OBJECT WITHOUT
CALLING NEW OR

DELETE
VOID RETURNSTATICOBJECT INT NTYPE – AN ENUM

OF THE OBJECT TYPE
THAT IS BEING

RETURNED.
VOID * - A POINTER TO
THE RETURNED OBJECT.

RETURNS A
POINTER TO THE

OBJECT FOR
REUSE LATER.

VOID RETURNDYNAMICOBJECT INT NTYPE – AN ENUM
OF THE OBJECT TYPE

THAT IS BEING
RETURNED.

VOID * - A POINTER TO
THE RETURNED OBJECT.

RETURNS A
POINTER TO THE

OBJECT FOR
REUSE LATER.

 162

 163

Enum List
BASE_OBJECT
STATIC_OBJECT,
PLATFORM
RAMP
POWER_NODE
ROUND_WALL
FAN
CAPACITOR
RESISTOR
FLAT_THING
DYNAMIC_OBJECT
ENEMY
ATTACK
FIRE_ENEMY
ICE_ENEMY
ELECTRIC_ENEMY
WIND_ENEMY
AVATAR
BOSS
FIRE_BEHAVIOR
FIRE_PRIMARY
ICE_W_FIRE
ELECTRIC_W_FIRE
WIND_W_FIRE
ICE_BEHAVIOR
ICE_PRIMARY
FIRE_W_ICE
ELECTRIC_W_ICE
WIND_W_ICE
WIND_BEHAVIOR
WIND_PRIMARY
FIRE_W_WIND
ICE_W_WIND
ELECTRIC_W_WIND
ELECTRIC_BEHAVIOR
ELECTRIC_PRIMARY
FIRE_W_ELECTRIC
ICE_W_ELECTRIC
WIND_W_ELECTRIC

 164

Features
• Vast reduction in new/deletes
• Reduces memory fragmentation.
• Resets Object data.

Time to Complete Estimate

• 3 days

Module Author
Joshua Bennett

 165

Renderer
 This module is an interface to the entire render system. It will manage culling,
materials, HUD, shaders, and render states. This module will manage rendering everything in
our game; rendering order of our game objects; initializing and shutting down Direct3D;
making the game fullscreen; managing fonts and writing with them; and managing the
Direct3D effect framework. To use this module you must call Init and to shut it down you must
call Shutdown.

Dependencies

• Access to:
o AnimationSystem
o HUD
o Culling
o MaterialSystem

• Accessed by:
o StateMachine

RETURN NAME PARAMETERS DESCRIPTION
BOOL INIT //HANDLE TO THE

WINDOW
HWND HWND

THIS FUNCTION
INITIALIZES THE
RENDERER AND
SETS UP DIRECTX
TO USE THE
HIGHEST
QUALITY
SETTINGS THE
GRAPHIC DEVICE
CAN HANDLE.

VOID MAKEFULLSCREEN BOOL BFULLSCREEN THIS FUNCTION
TAKES IN A BOOL
AND EITHER
WINDOWS OR
FULLSCREENS
THE GAME
WINDOW.

VOID SETCOLORMASK //ALLOW RED?
BOOL BALLOWRED

//ALLOW GREEN?
BOOL BALLOWGREEN

SETS IF A COLOR
IS ALLOWED IN
THE COLOR
BUFFER.

 166

//ALLOW BLUE?
BOOL BALLOWBLUE

//ALLOW ALPHA?
BOOL BALLOWALPHA

VOID CLEARBACKBUFFER VOID CLEARS THE
BACKBUFFER

VOID CLEARZBUFFER VOID CLEARS THE Z-
BUFFER

VOID CLEARBUFFERS VOID CLEARS BOTH
THE BACK
BUFFER AND Z-
BUFFER

VOID CLEARBACKBUFFER INT NWIDTH
INT NHEIGHT
//POSITION OF THE
TOP //LEFT CORNER
INT NX
INT NY

INT LOADFONT //FILE NAME OF THE
FONT
CONST CHAR*
SZFILENAME

//THE SIZE OF THE
FONT
INT NSIZE

//ITALIZED?
BOOL BITALIC

//BOLD?
BOOL BBOLD

THIS FUNCTION
LOADS IN A
FONT TO THE
FONT VECTOR
AND RETURNS
YOU ITS INDEX.

VOID UNLOADFONT //FONT ID
INT NID

UNLOADS THE
SELECTED FONT
FROM THE FONT
VECTOR

VOID WRITEFONT //FONT TO USE
INT NID

//POSITION
INT NX
INT NY

THIS FUNCTION
USES A
SPECIFIED FONT
TO WRITE TEXT
TO THE SCREEN
IN A SPECIFIED

 167

//COLOR RGBA
FLOAT* COLOR

//TEXT TO WRITE
CONST CHAR* SZTEXT

LOCATION AND
COLOR.

VOID SETPOINTSIZE //POINT SIZE!
FLOAT FSIZE

SET THE SIZE OF
THE POINTS

VOID PUSHMATERIAL ABSTRACTMATERIAL*
PMATERIAL

INT NMERGEMODE

PUSHES A
MATERIAL ONTO
THE MATERIAL
STACK.

VOID POPMATERIAL VOID POPS A
MATERIAL OFF
THE MATERIAL
STACK

INT GETMATERIALSIZE VOID THE CURRENT
SIZE OF THE
MATERIAL STACK

VOID DRAW CONST OBJECT3D*
POBJ

DRAWS THE
OBJECT BASED
ON ITS
INFORMATION

VOID DRAW CONST OBJECT3D*
POBJ
ABSTRACTMATERIAL*
PMATERIAL
INT NMERGEMODE

DRAWS THE
OBJECT WITH
THE SPECIFIED
MATERIAL AND
OBJECT
INFORMATION.

VOID RENDER VOID CLEARS SCREEN
AND DRAWS ALL
OBJECTS IN
DYNAMIC AND
STATIC LIST.

VOID PRECOMPILE VOID PRECOMPILES
THE SHADERS
LOADED IN THE
MATERIAL STACK

BOOL SHUTDOWN VOID SHUTS DOWN
DIRECTX AND
CLEANS UP ANY
MEMORY

VOID BEGINSCENE VOID BEGINS

 168

DRAWING THE
SCENE

VOID ENDSCENE VOID ENDS THE SCENE
DRAWING.

INT PUSHSTATIC3DOBJECT OBJECT3D* POBJ ADDS A STATIC
OBJECT TO BE
RENDERED

INT PUSHDYNAMIC3DOBJECT OBJECT3D* POBJ ADDS A DYNAMIC
OBJECT TO BE
RENDERED

VOID REMOVESTATIC3DOBJECT INT OBJECTID REMOVES AN
OBJECT FROM
THE STATIC
OBJECT LIST

VOID REMOVEDYNAMIC3DOBJECT INT OBJECTID REMOVES AN
OBJECT FROM
THE DYNAMIC
OBJECT LIST

CAMERA* GETCAMERA VOID GETS THE
CAMERA
CURRENTLY IN
USE

CULLING* GETFRUSTUM VOID RETURNS THE
FRUSTUM

VOID SETANIMATIONSYSTEM ANIMATIONSYSTEM* SETS THE
ANIMATION
SYSTEM THAT
THE RENDER
SYSTEM WILL
USE TO RENDER
FROM.

INT LOADSHADER CONST CHAR*
SZFILENAME

THIS FUNCTION
LOADS IN A
EFFECT FILE AND
RETURNS THE
INDEX INTO THE
VECTOR OF
SHADERS.

VOID UNLOADSHADER INT NID UNLOADS THE
SPECIFIED
SHADER ID

VOID UNLOADALLSHADERS VOID UNLOADS ALL
SHADERS.

 169

Features

• Acts as an interface to render all objects in SPSS in one centralized location.
• Organizes Materials to cut down on render-state changes.

Structs
struct Object3D
{

 Mat4 orientation Matrix;

int nTechniqueID;
int nTexID;
int nMeshID;

};

 170

Associated Risks
Risk: Affected Resource: P C RF

Justin Morgan, Tech Lead .2 .9 0.92

Response or avoidance:

The renderer might be incapable of
drawing enough enemies to the
screen. Not being able to draw the
required enemies will severely hurt
the pacing of our game as it is
currently set up.

5. Consult internet forums, articles, and books.
6. Seek help from other classmates working on

rendering.
7. Seek help from staff on rendering and culling

techniques.
8. If the renderer can’t handle all the enemies

necessary we will replace the large amount of
enemies with less, but more powerful ones.

This will be enacted at alpha.

Time to complete estimate

• Basic Renderer
o 1 day

• Render Manager
o 5 days

• Model Rendering
o 1 day

Total: 7 days

Module Author
Justin Morgan

 171

Sub Module
HUD
 This module controls the communication between all objects and modules in our game.
Objects or modules will register with this dispatcher and when an event happens for a specific
object or module then the dispatcher will send that event out. To use the HUD you must call
Init and to shut it down you must call Shutdown.

Dependencies

• Accessed to:
o Player System
o Object Manager

• Accessed by:
o Renderer

Return Name Parameters Description

void Init None

Initialized elements of the HUD

void Update float fDelta Updates the elements of the
HUD by the passed in time slice.
The information for the HUD will

be grabbed from the player
system as well as the Object

Manager.
void Render None Renders the HUD to the screen

void Shutdown None Shuts down any elements
dealing with the HUD

Features

• Allows one location for all HUD elements to render and update.

Time to Complete Estimate

• Implementation
o 2 Days

• Testing and Integration
o 1 day

Total: 3 days

Module Author
Philip Fox

 172

Sub Module
MaterialSystem
 This module is a sub set of the entire rendering system. The purpose of this system is
to make a visual change to world objects trivial, and to allow us to make quick changes
without recompiling the code. As a secondary purpose, this system is meant to minimize
render context switches to help mitigate some of the rendering bottlenecks. All renderable
objects should have one of these material sets.

Dependencies

• Accessed By:
o Renderer

RETURN NAME PARAMETERS DESCRIPTION

VOID CLEAR VOID THIS FUNCTIONS
CLEARS OUT THE
MATERIALS LOADED
IN FROM THE SCRIPT

VOID LOADSCRIPT CONST CHAR*
SZFILENAME

THIS FUNCTIONS
LOADS IN A SCRIPT
TO THE MATERIAL

VOID UPDATE FLOAT
FDELTATIME

THIS FUNCTION
UPDATES THE
DYNAMIC MATERIALS.
IT IS UNNECESSARY
TO CALL THIS
FUNCTION ON
MATERIALS THAT
AREN’T DYNAMIC,
BECAUSE TO BE
DYNAMIC MEANS THAT
IT MUST BE UPDATED
EVERY FRAME.

INT BLEND CONST CHAR*
SZFUNCTIONNAME

CONST CHAR*
SZFILENAME

THIS FUNCTION SETS
HOW THE MATERIALS
WILL BE BLENDED
TOGETHER.

VOID UPDATEDYNAMICMATERIALS VOID UPDATE ALL DYNAMIC
MATERIALS ON THE
STACK

BOOL ISDYNAMIC VOID IS THE MATERIAL
DYNAMIC?

BOOL ISTRANSPARENT VOID IS THE MATERIAL

 173

TRANSPARENT
ITN GETMERGEMODE VOID RETURNS THE

CURRENT MERGE
MODE

VOID POSTRENDER VOID CHANGES THE
MATERIALS BACK TO
THE DEFAULT ONES.

Features:

• Scriptable materials to make appearance changes trivial.
• Holding default render states and only changing the ones relevant to the object that

needs to be drawn will optimize our game by cutting down on render context changes.

Associated Risks
Risk: Affected Resource: P C RF

Justin Morgan, Tech Lead .1 .8 0.82

Response or avoidance:

The material system might cause the
load times to be too long to be
acceptable. This might be an issue
due to the slowness of reading in text
and parsing it in combination with the
large number of the scripts we will
need to load.

9. Consult internet forums, articles, and books.
10. Seek help from other classmates working on

scripting.
11. Seek help from staff on scripting techniques.
12. If the load times take too long we will cut

down on the amount that needed to be loaded at
run time by hard coding some of the attributes
into the code base

This will be enacted a week before beta.

Time to complete estimate

• Data Driven Material System
o 3 days

Module Author
Justin Morgan

 174

Sub Module
Camera
 The Camera Module defines the functionality for controlling the viewpoint of the game.

Dependencies

• Accessed by:
o StateMachine
o Render
o Collision

Function Table:
RETURN NAME PARAMETERS DESCRIPTION

VOID UPDATEBASEDONAVATAR D3DXMATRIX
AVATARWORLDMAT
– THE MATRIX OF
THE TARGET
D3DXVECTOR3
OFFSET – OFFSET
FROM THE TARGET

DOES A HARD
ATTACH AND THEN
APPLYS A
ROTATION BASED
ON THE MOUSE
MOVEMENT
DURING GAMEPLAY

VOID SWOOPINONAVATAR D3DXMATRIX
AVATARWORLDMAT
– THE MATRIX OF
THE TARGET

THE LEVELS START
WITH THE CAMERA
SWOOPING IN ON
THE AVATAR -
ALICE

Associated Risks
Risk: Affected Resource: P C RF

Tim Turcich 0.05 0.8 .64

Response or avoidance:

Due to the fact that we are doing
collision with the camera and the
level. There is a possibility that the
camera will get stuck in geometry. 1. Seek help from colleagues by FF1.

2. Find how professionals do cameras by FF2.
3. Back up plan is to let the camera go through
geometry by Beta.

Features

• Hard attached to player allowing rotation around player for a 360 degree view.

Time to Complete Estimate

• 3 days

Module Author

• Tim Turcich

 175

AI System
 The AI system is broken down into five primary modules: The Waypoint Manager,
Pathfinding, Flocking and the Hive Mind module. The AI Manager will handle all incoming and
out going communications to other systems and will control the other modules. Waypoint
Manager will handle connecting points to the player and to each other, along with storing
them. Pathfinding will use the waypoints gotten from the waypoint manager and will create
paths to the players avatar. Flocking will keep the enemies within groups while also handling
the jumping of wind enemies. Finally the Hive Mind will be the bridge between Pathfinding and
Flocking by controlling groups and causing them to follow after the player, along with electric
enemies warping ahead.

Dependencies

• Access to:
o Asset Manger
o ObjectHierarchy
o Flocking
o Pathfinding
o HiveMind

• Accessed by:
o ObjectHierarchy
o StateMachine

RETURN NAME PARAMETERS DESCRIPTION
VOID AILEVELLOAD INT NLEVEL – THE LEVEL

BEING LOADED, -1 FOR
ENDLESS

PREPARES THE
SYSTEM FOR THE

NEXT LEVEL, MUST
HAVE ALL

WAYPOINTS BEFORE
BEING CALLED.

VOID CLEAR VOID CLEANS UP ALL
SYSTEMS FOR THE

NEXT RUN.
VOID ADDSPAWNPOINT VEC3 VEC3POS OR FLOAT FX,

FLOAT FY, FLOAT FZ – USED
FOR CREATING A NEW

POINT IN THE WORLD TO
SPAWN AT

ADDS A NEW SPOT
TO SPAWN ENEMIES

IN THE WORLD.

VOID UPDATE VOID DEPENDING ON
EVENTS MAY OR MAY

NOT UPDATE
PATHFINDING,

 176

ALWAYS CHECKS
GROUP FLOCKING,

HANDLES SPAWNING
NEW WAVES.

VOID HANDLEEVENT CEVENT *PEVENT – HOLDS A
CLASS CONTAINING
MESSAGE TYPE AND

MESSAGE PARAMETER

PROCESSES AN
EVENT MESSAGE.
(ENEMY_DEATH)

VOID ADDWAYPOINT VEC3 VEC3POS OR FLOAT FX,
FLOAT FY, FLOAT FZ – USED

FOR CREATING A NEW
WAYPOINT WITHIN THE

WORLD

ADDS A NEW
WAYPOINT TO THE

WAYPOINT
MANAGER THOUGH
THE PATHFINDING

SYSTEM.
SQUAD* SPAWNSQUAD INT NENEMYCOUNT – THE

NUMBER TO SPAWN
INT NTYPE – THE TYPE OF

ENEMY TO SPAWN
VEC3 VECSPAWNPOINT –
WHERE TO SPAWN THE

SQUAD AT

LETS OUTSIDE
SYSTEMS SPAWN
NEW SQUADS AT

ANY LOCATION THEY
DESIRE, MADE FOR
BOSS USE. RETURNS
A POINTER TO THE

SQUAD.
SQUAD* SPLITSQUAD ENEMY* PENEMY – THE

ENEMY TO PUT INTO A NEW
SQUAD

REMOVES THE
ENEMY FROM ITS
OLD SQUAD AND

PUTS IT INTO A NEW
ONE BY ITSELF.

Features

• Covers all AI systems.
• Access point for all other systems

Time to Complete Estimate

• Basic Framework
o 1 day

• Boss States
o 3 days

Total 4 days

Module Author
Joshua Bennett

 177

Sub Module
Pathfinding
 Used to find the fastest path from the nearest waypoint to the player. Pathfinding
takes air enemies jumping into account. To avoid unneeded costs, this system will be updated
only when there is enough of a change in the environment. Pathfinding also stores all in level
way points loaded from the Asset Manager. Pathfinding tells the Asset Manager when to load
and remove the waypoints from memory.

Dependencies

• Access to:
o Waypoint Manager

• Accessed by:
o HiveMind
o AI System

RETURN NAME PARAMETERS DESCRIPTION

VOID CLEAR VOID CLEANS SYSTEM
OUT FOR NEXT USE

VOID UPDATE VEC3 VEC3POS – GOAL XYZ TAKES THE GOAL
POSITION AND

DECIDES IF PATHS
NEED TO BE
UPDATED

DEPENDING ON THE
WAYPOINT
MANAGER

VOID INITLEVEL VOID TELLS THE
WAYPOINT

MANAGER TO
CONNECT ALL
WAYPOINTS.

VOID ADDWAYPOINT VEC3 VEC3POS – USED FOR
CREATING A NEW WAYPOINT

WITHIN THE WORLD

ADDS A NEW
WAYPOINT TO THE

WAYPOINT
MANAGER.

VOID FINDPATH SQUAD* SQUADTOMOVE – THE
SQUAD TO BE GIVEN A NEW

PATH

FINDS A PATH FOR
THE SQUAD PASSED
IN, AND FILLS OUT
THE SQUADS PATH

VECTOR.

Features

• Optional and to be updated only when needed.

 178

Time to Complete Estimate

• Grouping
o 2 days

• Waypoints
o 3 days

Total: 5 days

Module Author
Joshua Bennett

 179

Sub Module
Waypoint Manager
 Holds all waypoints within the world and handles connecting them to each other and to
the player as well.

Dependencies

• Accessed by:
o Pathfinding

RETURN NAME PARAMETERS DESCRIPTION

VOID INITLEVEL VOID CONNECTS ALL
PRELOADED

WAYPOINTS TO
EACH OTHER.

VOID CLEAR VOID CLEANS ALL
SYSTEMS OUT TO

BE REUSED.
BOOL – TRUE IF

ANY
CONNECTIONS

CHANGED

CONNECTTOPLAYER VOID

CHECKS WHICH
WAYPOINTS LEAD
TO THE PLAYER,
AND RETURNS

TRUE IF ENEMIES
SHOULD TRY TO

FIND A NEW
PATH.

BOOL – TRUE IF
A CONNECTION
CAN BE MADE

CANCONNECT VEC3 VEC3POS1 – FIRST
OBJECTS LOCATION,

VEC3 VEC3POS2 –
SECOND OBJECTS

LOCATION

CHECKS IF TWO
POINTS IN THE

WORLD CAN
REACH EACH

OTHER, RETURNS
TRUE IF

POSSIBLE.
VOID ADDWAYPOINT VEC3 VEC3POS – USED

FOR CREATING A NEW
WAYPOINT WITHIN THE

WORLD

ADDS A NEW
WAYPOINT TO
THE SYSTEM.

WAYPOINT* -
THE CLOSEST
WAYPOINT

FOUND

FINDCLOSESTWAYPOINT VEC3 VECXYZ – THE
PLACE OF THE OBJECT

LOOKING FOR ITS NEXT
POINT, BOOL BJUMP –

IF THE OBJECT CAN USE
JUMPING WAYPOINT

FINDS THE
CLOSEST

WAYPOINT THAT
CAN BE REACHED
AND RETURNS IT.
IF NONE WORK,
RETURNS THE

PLAYERS POINT

 180

AS A FAILSAFE.

WayPoint – Struct within Waypoint Manager
 Holds the place of the given point, data of its connection with the player, and what
other points it can connect to.

Features

• Only updates when player has moved far enough.

Time to Complete Estimate
???

Module Author
Joshua Bennett

 181

Sub Module
Flocking
 This system is to manage movement within the groups to avoid enemy colliding with
each other or spreading out too much.

Dependencies

• Accessed by:
o HiveMind

RETURN NAME PARAMETERS DESCRIPTION
VOID SQUADMOVE WAYPOINT* PNEXTPOS –

THE NEXT LOCATION TO
MOVE TO, SQUAD*

CURRENTSQUAD – THE
SQUAD TO MOVE

HANDLES TELLING
EVERY ENEMY

WITHIN A SQUAD
WHERE TO MOVE

ASIDE FROM
TELEPORTING

Features

• Checks and updates every enemy movement.
• Handles jumping behavior.
• Splits squads if enemies are to far apart.

Time to Complete Estimate

• Basic
o 2 days.

• Geometry avoidance
o 3 days

• Electric Behavior
o 3 days

Total: 8 days

Module Author
Joshua Bennett

 182

Sub Module
HiveMind
 Primarily a class for holding data, the hive mind stores group’s information, all enemies
within a given group, and the next location for them to move to. When GetNextPoint function
in the player manager is called, it references the data stored in the Hive Mind. Due to its role
as a storage holder within the AI Manager, it has no functions other then accessors and
mutators. All groups are stored within the hive mind.

Dependencies

• Access to:
o Pathfinding

• Accessed by:
o AI System

RETURN NAME PARAMETERS DESCRIPTION
VOID LOAD VOID LOADS ALL NEEDED

FOR EFFECTS
SYSTEM.

VOID SHUTDOWN VOID SHUTS DOWN AND
FREE’S SQUAD
MEMORY, NOT

ENEMIES WHICH IS
HANDLED IN

OBJECT MANAGER.
VOID CLEARALL VOID CLEANS SYSTEM UP

AND READY’S IT
FOR NEXT USE.

SQUAD* -
POINTER TO
SQUAD MADE

NEWSQUAD INT NENEMYCOUNT – THE
NUMBER TO SPAWN

INT NTYPE – THE TYPE OF
ENEMY TO SPAWN

VEC3 VECSPAWNPOINT –
WHERE TO SPAWN THE SQUAD

AT

MAKES A NEW
SQUAD AT THE

LOCATION GIVEN.

SQUAD* -
POINTER TO
SQUAD MADE

NEWSQUAD ENEMY* PENEMY – THE ENEMY
TO PUT IN A SOLO SQUAD

PUTS THE PASSED
IN ENEMY TO A

NEW SQUAD OF ITS
OWN.

VOID ADDENEMY ENEMY* PENEMY – ENEMY TO
ADD TO A SQUAD

PUTS THE PASSED
IN ENEMY INTO A
SQUAD MATCHING

ITS ID.

 183

VOID REMOVEENEMY ENEMY* PENEMY – ENEMY TO
REMOVE FROM A SQUAD

REMOVES THE
ENEMY FROM ITS

SQUAD, ALSO
CHECKS IF TO
REMOVE THE

SQUAD OR NOT.
VOID SORTENEMIES SQUAD* PSQUADTOSORT –

THE SQUAD TO SORT, VEC3&
POSPLAYER – A REFERENCE OF
THE LOCATION OF THE PLAYER

SORTS ENEMIES ON
FACTORS OF
HEIGHT AND

DISTANCE FROM
THE PLAYER AND

DECIDES THE
LEADER ON THE

RESULTS.
VOID UPDATE VOID DETERMINES ALL

SQUAD ACTIONS
BY CALLING OTHER

SYSTEMS AND
HANDLING THE

RESULTS.

Squad – Struct in HiveMind
 Contains information for all enemies within a single group, along with other
information needed for electric enemies teleporting, wind enemies jumping, and the current
path.

Features

• Holds all movement information.
• Holds all Group information.

Time to Complete Estimate

• 2 days for both

Module Author
Joshua Bennett

 184

FXManager
 This module is responsible for controlling all of the audio/visual weapon and special
effects in the game. It will create compositions of the various effect pieces and will coordinate
between all the components such as: shader effects, particle effects, sound effects, and
geometry. Any renderable objects will be created and fed off to the object manager. Access to
the various subsystems will be given through the public interface for custom purposes, but the
FX system also has support for automated initialization of predetermined effects via a single
function call.

Dependencies
Access to:

• Sound Manager
• Particle Manager
• ObjectManager

Accessed by:
• StateMachine
• AnimationSystem

RETURN NAME PARAMETERS DESCRIPTION
VOID INIT NONE INITIALIZES THE FX

SYSTEM AND THE
VARIOUS
SUBSYSTEMS FOR
USE. LOADS IN
EFFECTS
DESCRIPTIONS

VOID SHUTDOWN NONE SHUTS DOWN THE
FX SYSTEM AND THE
VARIOUS
SUBSYSTEMS.

VOID STARTEFFECT VEC3
VECPOSITION
//START LOC OF
EFFECT

INT NNAME
//ENUM INDEX OF
EFFECT

CREATES THE
DESIRED EFFECT,
AUTOMATED
ENTIRELY.

PARTICLEMANAGER
*

GETPARTICLEMGR NONE RETURNS POINTER
TO PARTICLE
SYSTEM FOR

 185

ACCESSING PUBLIC
FUNCTIONS.

AUDIOSYS * GETAUDIOSYS NONE RETURNS POINTER
TO THE AUDIO
SYSTEM FOR
ACCESSING PUBLIC
FUNCTIONS.

Enum of Effects
FIRE_PRIMARY
ICE_PRIMARY
WIND_PRIMARY
ELECTRIC_PRIMARY
FIRE_ICE_SECONDARY
FIRE_WIND_SECONDARY
FIRE_ELECTRIC_SECONDARY
ICE_FIRE_SECONDARY
ICE_WIND_SECONDARY
ICE_ELECTRIC_SECONDARY
WIND_FIRE_SECONDARY
WIND_ICE_SECONDARY
WIND_ELECTRIC_SECONDARY
ELECTRIC_FIRE_SECONDARY
ELECTRIC_ICE_SECONDARY
ELECTRIC_WIND_SECONDARY

 186

Features
• Allows the combination of multiple systems into one controllable Effect Object that

provides a convenient façade for the individual effects subsystems as well as providing
a simplified function that will generate a complete effect in the world.

• Dynamically assigns shaders to an effect based on whether it is required or not.
• Generates renderable objects that will plug directly into the object manager,

preserving the responsibilities of the overall system architecture.
• Allows for activation of effects based on plain English enumerations, making function

calls inherently self-documenting.

Associated Risks
Risk: Affected Resource: P C RF

Michael Keenan, Design Lead .3 .8 .86

Response or avoidance:

Implementing 16 unique weapon
effects. Without the effects, the
game loses a lot of its feedback and
intensity. Also, the underlying
elemental system is potentially
compromised by the absence of all 16
weapon attacks.

1. Offload some of the effects work to Tim if I am
behind schedule by Alpha.
2. Reuse some of the weapon effects, only changing
small things like color.
3. Make each effect a simple colored particle
emission if unable to implement by Beta.

Time to Complete Estimate
Compilation of the sub-systems + 4 days tweaking each of the systems.

Module Author
Michael Keenan

 187

 Sub Module
Sound Manager
 This module is responsible for generating and managing all sound effects within the
game. It will load, store, play, stop, and deallocate all the available sound assets in the game.
The sound system will be making use of the FMOD 3 API to trivialize the mundane functions of
sound playback, as well as giving me easy tools to manipulate the sound to add more intensity
to the game. If time permits, layered background sound will be used.

Dependencies

• Accessed by:
o State Machine
o FX Manager

RETURN NAME PARAMETERS DESCRIPTION
VOID INIT NONE INITIALIZES THE

SOUND SYSTEM.
VOID SHUTDOWN NONE SHUTS DOWN THE

SOUND SYSTEM.
VOID PLAYSOUND INT NID

//ID OF THE SOUND TO
PLAY

BOOL BLOOPING
//SIGNIFIES A LOOPING
SOUND OR NOT.

SIMPLY PLAYS THE
SOUND BASED ON
THE SOUND ID
PASSED IN AND
WHETHER IT IS
LOOPING OR NOT.

VOID STOPSOUND INT NID
//ID OF THE SOUND TO
PLAY.

IF SOUND IS
CURRENTLY
PLAYING, PAUSES
SOUND.

VOID RESETSOUND INT NID
//ID OF THE SOUND TO
PLAY

RESETS SOUND TO
BEGINNING OF
TRACK.

VOID DISTORT INT NID
//ID OF THE SOUND TO
PLAY

ADDS A STYLISTIC
DJ DISTORTION TO
THE BACKGROUND
MUSIC (USED
DURING CERTAIN
EFFECTS AND
DEATH).

VOID PLAY3DSOUND INT NID
//ID OF THE SOUND TO
PLAY.

PLAYS A 3D
SOUND.

 188

VEC3 VPOSITION
//POSITION OF THE
SOUND IN 3D SPACE.
VEC3 VLISTENER
//POSITION OF THE
LISTENER IN 3D SPACE

VOID LOADSOUND CHAR * SZFILENAME
//FILE OF THE SOUND
TO LOAD.

LOADS A SOUND
INTO MEMORY FOR
PLAYBACK.

VOID UNLOADSOUND INT NID
//ID OF THE SOUND TO
REMOVE FROM
MEMORY.

REMOVES A SOUND
FROM MEMORY.

Features

• Serves as a storage center for sound IDs, centralized playback station for all audio
• Supports both 3D and normal sound.

Associated Risks
Risk: Affected Resource: P C RF

Michael Keenan, Design Lead .5 .2 .6

Response or avoidance:

Getting layered sound to work so that
it responds accurately to the number
of enemies onscreen and that it
doesn’t switch layers so fast that it
sounds jarring.

1. Ask Sigsby for help as needed since he has
some experience working with FMOD by
10/25.

2. Reduce number of songs to a single one and
see if I can get that to work by Beta.

3. Scrap layered sound and just play a lone
background track.

Time to Complete Estimate

• 2 days for tech associated
• 1 day for integration and testing for each effect (shared with other effect integration)
• 4 days for tweaking and bug fixes (shared with FX Manager)

Total: 22 days

Module Author
Michael Keenan

 189

Sub Module
Particle Manager
 This module is responsible for generating all of the particle effects in the game. It will
store all the available particle descriptions, and it will handle the initialization and passing of
the renderable emitter to the object manager. Point sprites will be used to generate the
particles.

Dependencies

• Access to:
o ObjectManager

• Accessed by:
o FX Manager

RETURN NAME PARAMETERS DESCRIPTION
VOID INIT NONE INITIALIZES THE

PARTICLE SYSTEM
AND FOR USE.
LOADS IN PARTICLE
EMITTER
DESCRIPTIONS

VOID SHUTDOWN NONE SHUTS DOWN THE
PARTICLE SYSTEM.

VOID CREATEEMITTER VEC3
VECPOSITION
//START LOC OF
EFFECT

INT NNAME
//ENUM INDEX OF
EFFECT

CREATES THE
EMITTER USING THE
DESIRED
DESCRIPTOR, AND
FEEDS THE EMITTER
TO THE OBJECT
MANAGER.

NOTHING PARTICLEMANAGER CHAR * SZFILENAME
//FILE WHICH
CONTAINS EMITTER
DESCRIPTIONS

DEFAULT
CONSTRUCTOR

NOTHING ~PARTICLEMANAGER NONE DESTRUCTOR

Enum of Effects
FIRE_PRIMARY
ICE_PRIMARY
WIND_PRIMARY
ELECTRIC_PRIMARY
FIRE_ICE_SECONDARY

 190

FIRE_WIND_SECONDARY
FIRE_ELECTRIC_SECONDARY
ICE_FIRE_SECONDARY
ICE_WIND_SECONDARY
ICE_ELECTRIC_SECONDARY
WIND_FIRE_SECONDARY
WIND_ICE_SECONDARY
WIND_ELECTRIC_SECONDARY
ELECTRIC_FIRE_SECONDARY
ELECTRIC_ICE_SECONDARY
ELECTRIC_WIND_SECONDARY

Features

• Serves as a storage center for emitter blueprints, as well as a factory that can
generate a specific emitter on request.

• Generates renderable objects that will plug directly into the object manager,
preserving the responsibilities of the overall system architecture.

• Allows for activation of emitters based on plain English enumerations, making function
calls inherently self-documenting.

Associated Risks
Risk: Affected Resource: P C RF

Michael Keenan, Design Lead .5 .8 .9

Response or avoidance:

The particle assets may not be
delivered to us in a timely fashion,
preventing me from experimenting
with them and getting it to look good
in the game, up to the standard of the
rest of the particle effects.

1. Offload some of the effects work to Tim if I am
behind schedule by Alpha.
2. Reuse some of the weapon effects, only changing
small things like color.
3. Make each effect a simple colored particle
emission if unable to implement by Beta.

Time to Complete Estimate

• Research/Tech 5 days
• 2 days for each weapon effect (shared partly with other sub-systems)
• 4 days tweaking and bug fixes (shared with FX Manager).

Total: 41 days

Module Author
Michael Keenan

 191

Milestone Deliverables

PoC
Joshua Bennett:
Asset Managment
Object Creation and Load
Phillip Fox:
The player can move around the world with WASD.
Basic menu system.
Game input: WASD, spacebar, mouse movement, and mouse left button input.
Michael Keenan:
Basic attack particles.
Sound effect playback on attack.
Justin Morgan:
Basic primitive and model rendering.
Basic animation playbacks.
Tim Turcich:
The player can jump using the spacebar.
The player aims in the direction dictated by the reticule, which is controlled by the mouse.
Attack collision with target.
“PoC” fire attack.

FeatureFrag1
Joshua Bennett:
A level will be loaded into the game.
Enemies will be showing basic flocking and fleeing intelligence.
Enemies will be spawning into the world.
Phillip Fox:
There will be a HUD in place giving the pertinent player information.
Michael Keenan:
Fire primary attack will be in the game.
Fire with ice secondary attack will be present.
Fire with electric secondary attack will be present.
Ice primary attack will be in the game
Wind primary attack will be in the game
Electric primary attack will be in the game
Justin Morgan:
There will be more than one animation in the game.
Animations will be using shaders.
Tim Turcich:
All primary attacks will collide with enemies.

 192

FeatureFrag2
Joshua Bennett:
Enemies will perform geometry avoidance with the flocking/fleeing
The electric enemies will perform their unique movement patterns.
Enemies will demonstrate grouping.
Enemies will be pathfinding using waypoints.
Phillip Fox:
Player model integration and testing.
Player jump integration and testing.
Player run forward integration and testing.
Gambit model integration and testing.
Gambit run integration and testing.
Level Memory integration and testing.
Michael Keenan:
Fire with wind secondary attack will be present.
Ice with fire secondary attack will be present.
Ice with electric secondary attack will be present.
Ice with wind secondary attack will be present.
Wind with fire secondary attack will be present.
Wind with ice secondary attack will be present.
Wind with electric secondary attack will be present.
Justin Morgan:
The geometry and enemies in the world will be culled.
The render manager will be up supporting its subsystems.
The lighting will be partially in place, including a Ward anisotropic directional light and a
minnaert point light.
Tim Turcich:
Attack collisions and physics for the fire behavior, ice behavior, wind behavior, and electric
behavior.

Alpha
Joshua Bennett:
Testing attack mechanics.
Testing enemy abilities.
Phillip Fox:
Player hit integration and testing.
Player attack00 integration and testing.
Env PowerNode integration and testing.
Player foot step integration and testing.
Michael Keenan:
Electric with fire secondary attack will be present.
Electric with ice secondary attack will be present.
Electric with wind secondary attack will be present.
Justin Morgan:

 193

Fully supported data driven material system.
Tim Turcich:
Attack physics and collision for electric behavior.
Testing attack collision.

Beta
Joshua Bennett:
Achievement system will be in the game.
The scoring/score multiplier will be in place.
Player management will be present.
Boss states will be in place.
Time attack, survival and evasion modes will be in the game.
Phillip Fox:
The HUD will have a radar present, displaying the enemy locations.
Player walk backward integration and testing.
Player death integration and testing.
Player strafe left integration and testing.
Player strafe right integration and testing.
Gambit hit integration and testing.
Gambit death integration and testing.
Gambit jump integration and testing.
Tex Player integration and testing.
Normal player integration and testing.
Fire Gambit Texture integration and testing.
Gambit normal integration and testing.
Menu assets integration and testing.
HUD assets integration and testing.
Splash screens integration and testing.
Game music00 integration and testing.
player grunt sounds integration and testing.
player hit sounds integration and testing.
enemy hit sounds integration and testing.
Michael Keenan:
Level testing power nodes and object placement.
Power node system
Level design and layout.
Justin Morgan:
Animation blending will be in the game.
Applicable objects in the game will be using the Glow Shader.
Abillity swapping
Player shield.
Tim Turcich:
Level geometry will be affected by a normal mapping shader.
Attack system will be in place.

 194

The boss will be in place.
Fire attack interaction tweaking
Gold
Joshua Bennett:
Scoring system tweaks.
Fire Enemy Hit response tweaking.
Ice Enemy Hit response tweaking.
Electri Enemy Hit response tweaking.
Wind Enemy Hit response tweaking.
Enemy AI bugs and tweaking.
Phillip Fox:
Player idle integration and testing.
Player b attack animation integration and testing.
Hub level integration and testing.
Power Grid Level integration and testing.
Boss model integration and testing.
Boss rage and puke animation integration and testing.
Level harddrive integration and testing.
Environmental integration and testing.
Gambit ice texture integration and testing.
Wall textures integration and testing.
Load screen integration and testing.
Pause screen integration and testing.
Gambit wind texture integration and testing.
Gambit Electric texture integration and testing.
Player Death sounds integration and testing.
Menu music integration and testing.
Enemy death sounds integration and testing.
Game music integration and testing.
Dialog taunt sounds integration and testing.
Intro cutscene integration and testing.

Michael Keenan:
Effect textures integration and testing.
Attack sounds effect textures integration and testing.
Effect bug tweaking.
Justin Morgan:
Rendering bug fixes and tweaking
Animation bug fixes and tweaking
Tim Turcich:
Fire Attack interaction tweaking.
Ice Attack interaction tweaking.
Electric Attack interaction tweaking.
Wind Attack interaction tweaking.

 195

Collision Bug fixes.
Gameplay bug fixes.
Archive
Joshua Bennett:
Documentation archival.
Phillip Fox:
Documentation archival.
Michael Keenan:
Documentation archival.
Justin Morgan:
Documentation archival.
Tim Turcich:
Documentation archival.

 196

Appendix A

Memory Map

 CPU GPU

2 mB for
Executable

50.3 mB for level
textures

28.8 kB for a
level

1.26 mB for HUD
information

160kB for avatar
model

6.2 mB for
avatar texture

4.8 mB for max
on screen
enemies

6.2 mB for
enemy textures

1.1 mB for
particle textures

1.1 mB for
particle textures

30 mB for SFX
and background
music

31.2 mB for
menu

CPU Total 38mB 80kB GPU Total 65mB 60kB

 197

Integration Plan
Integration Lead
Joshua Bennett

Methodology
 Integration will take place at the end of every working day. At the end of each code
integration there will be a build to check for errors, warnings, and crashes. On top of these
nightly integrations there will be an integration day on the Saturday before a milestone. On
this day and the following Sunday there will be a code freeze as to avoid unintentional bugs
before a turn-in. We will use AlienBrain source control to moderate our code and asset source
control. If during integration a module breaks the build then the author(s) of the module will
debug and troubleshoot the problem. If he cannot determine the source of the problem within
two hours we will rollback the build to the last known working build. The author(s) of the
module that was causing the issue will store a local copy before this roll back and immediately
drop what he is scheduled for to fix the problem. We will not allow multiple file check outs in
hopes that it will mitigate some source integration issues. A group member is allowed to check
out however many files that are needed at one time. Also, when checking back in a file the
group member will be required to add a comment saying what was changed in that file. This
comment should make rollbacks a simpler process with less guessing required.

 198

Testing Plans
 Testing is to be primary done by the system’s creator, with further testing by others in
the team upon integration. Scheduled testing will list who will test the given section while any
unforeseen testing will be delegated by the gameplay lead Joshua Bennett. Testing for bugs
will be done in the times specified in the Gantt or if a team member happens to be ahead of
schedule.

No code is to be submitted with known bugs of a high or critical level, and medium bugs are to
be fixed before any milestone. Although finding bugs will be primarily the module author’s
duty, the repairing of bugs will be given to anyone ahead of schedule if the primary author
cannot afford to spend time fixing it, or if the number of bugs has become to great then the
whole team will begin to work on fixing them.

List of bug levels and examples:
• Low

o Minor clipping between objects
o Anything that will be hard to see by standard players

• Med
o Flickering images
o AI hang-ups
o Anything that doesn’t break gameplay

• High
o Entire AI failure
o Camera getting caught on geometry
o Anything that breaks gameplay, but not the game

• Critical
o Game crashing
o Anything that makes the game unplayable

The bug report will be kept in the root project folder on the server and will be added to for
each known bug found within the master build. Each report will never be removed, but will
show if the bug has been repaired or not. The report must hold the following: The date found,
the date fixed the threat level, what system it is in relation too, a description of the bug with
how to repeat it (if possible), and a unique ID number. The unique ID will be prefixed by the
level of the bug then a number unique to that bug priority level. The way we will insure the
uniqueness of each priority levels number is by incrementing from the last known bug of that
level.

 199

Example bug report:
Date found: 10/10/08
Date fixed: n/a
Threat level: High
Module affected: AI
Description: When behind minor environment objects, the enemies will get hung up and will
cluster. Glitch is often and will happen many times in a single level, making groups of enemies
too easy to destroy and reduces and removes all game challenge. To repeat just play a level
and run behind game objects.
ID: HIGH_001

 200

 201

Appendix B

Game Folder Hierarchy

	Game Document
	Table of Contents
	Publishing Document
	Production Document

